Industrial Hose Products

CAT 4800-USA

June 2002

Your Job. Our Hose.

A HITLING &

1111111

anne stilles

.....

.....

HHH

PROPANE

.....

-

2800

the second se

THE REAL PROPERTY IN

The items described in this document and other documents or descriptions provided by Parker Hannifin Corporation, as subsidiaries and its authorized distributors are hereby offered for sale at prices to be established by Parker Hannifin Corporation, its subsidiaries and its authorized distributors. This offer and its acceptance by any customer ("Buyer") shall be governed by all of the following Terms and Conditions. Buyer's order for any such item, when communicated to Parker Hannifin Corporation, its subsidiary or an authorized distributor ("Seller") verbally or in writing, shall constitute acceptance of this offer.

1. Terms and Conditions of Sale: All descriptions, quotations, proposals, offers, acknowledgments, acceptances and sales of Seller's products are subject to and shall be governed exclusively by the terms and conditions stated herein. Buyer's acceptance of any offer to sell is limited to these terms and conditions. Any terms or conditions in addition to, or inconsistent with those stated herein, proposed by Buyer in any acceptance of an offer by Seller, are hereby objected to. No such additional, different or inconsistent terms and conditions shall become part of the contract between Buyer and Seller unless expressly accepted in writing by Seller. Seller's acceptance of any offer to purchase by Buyer is expressly conditional upon Buyer's assent to all the terms and conditions stated herein, including any terms in addition to, or inconsistent with those contained in Buyer's offer. Acceptance of Seller's products shall in all events constitute such assent.

2. Payment: Payment shall be made by Buyer net 30 days from the date of delivery of the items purchased hereunder. Any claims by Buyer for omissions or shortages in a shipment shall be waived unless Seller receives notice thereof within 30 days after Buyer's receipt of the shipment.

3. Delivery: Unless otherwise provided on the face hereof, delivery shall be made F.O.B. Seller's plant. Regardless of the method of delivery, however, risk of loss shall pass to Buyer upon Seller's delivery to a carrier. Any delivery dates shown are approximate only and Seller shall have no liability for any delays in delivery.

4. Warranty: Seller warrants that the items sold thereunder shall be free from defects in material or workmanship for a period of 365 days from the date of shipment to Buyer, or 2,000 hours of use, whichever expires first. THIS WARRANTY COMPRISES THE SOLE AND ENTIRE WARRANTY PERTAINING TO ITEMS PROVIDED HEREUNDER. SELLER MAKES NO OTHER WARRANTY, GAURANTEE, OR REPRESENTATION OF ANY KIND WHATSOEVER. ALL OTHER WARRANTIES, INCLUDING BUT NOT LIMITED TO, MERCHANTIBILITY AND FITNESS FOR PURPOSE, WHETHER EXPRESS, IMPLIED, OR ARISING BY OPERATION OF LAW, TRADE USAGE, OR COURSE OF DEALING ARE HERE-BY DISCLAIMED.

NOTWITHSTANDING THE FOREGOING, THERE ARE NO WARRANTIES WHATSOEVER ON ITEMS BUILT OR ACQUIRED WHOLELY OR PARTIALLY, TO BUYER'S DESIGNS OR SPECIFICATIONS.

5. Limitation Of Remedy: SELLER'S LIABILITY ARISING FROM OR IN ANY WAY CONNECTED WITH THE ITEMS SOLD OR THIS CONTRACT SHALL BE LIMITED EXCLUSIVELY TO REPAIR OR REPLACEMENT OF THE ITEMS SOLD OR REFUND OF THE PURCHASE PRICE PAID BY BUYER, AT SELLER'S SOLE OPTION. IN NO EVENT SHALL SELLER BE LIABLE FOR ANY INCIDENTAL, CONSEQUENTIAL OR SPECIAL DAMAGES OF ANY KIND OR NATURE WHAT-SOEVER, INCLUDING BUT NOT LIMITED TO LOST PROFITS ARISING FROM OR IN ANY WAY CONNECTED WITH THIS AGREEMENT OR ITEMS SOLD HEREUNDER, WHETHER ALLEGED TO ARISE FROM BREACH OF CON-TRACT, EXPRESS OR IMPLIED WARRANTY, OR IN TORT, INCLUDING WITH-OUT LIMITATION, NEGLIGENCE, FAILURE TO WARN OR STRICT LIABILITY.

6. Changes, Reschedules and Cancellations: Buyer may request to modify the designs or specifications for the items sold herunder as well as the quantities and delivery dates thereof, or may request to cancel all or part of this order, however, no such requested modification or cancellation shall become part of the contract between Buyer and Seller unless accepted by Seller in a written amendment to this Agreement. Acceptance of any such requested modification or cancellation shall be at Seller's discretion, and shall be upon such terms and conditions as Seller may require.

7. Special Tooling: A tooling charge may be imposed for any special tooling, including without limitation, dies, fixtures, molds and patterns, acquired to manufacture items sold pursuant to this contract. Such special tooling shall be and remain Seller's property notwithstanding payment of any charges by Buyer. In no event will Buyer acquire any interest in apparatus belonging to Seller which is utilized in the manufacture of the items sold hereunder, even if such apparatus has been specially converted or adapted for such manufacture and notwithstanding any charges paid by Buyer. Unless otherwise agreed, Seller shall have the right to alter, discard or otherwise dispose of any special tooling or other property in its sole discretion at any time.

8. Buyer's Property: Any designs, tools, patterns, materials, drawings, confidential information or equipment furnished by Buyer or any other items which become Buyer's property, may be considered obsolete and may be destroyed by Seller after two (2) consecutive years have elapsed without Buyer placing an order for the items which are manufactured using such property. Seller shall not be responsible for any loss or damage to such property while it is in Seller's possession or control.

9. Taxes: Unless otherwise indicated on the face hereof, all prices and charges are exclusive of excise, sales, use, property, occupational or like taxes which may be imposed by any taxing authority upon the manufacture, sale or delivery of the items sold hereunder. If any such taxes must be paid by Seller of if Seller is liable for the collection of such tax, the amount thereof shall be in additon to the amounts for the items sold. Buyer agrees to pay all such taxes or to reimburse Seller therefore upon receipt of its invoice. If Buyer claims exemption from any sales, use or other tax imposed by any taxing authority, Buyer shall save Seller harmless from and against any such tax, together with any interest or penalties thereon which may be assessed if the items are held to be taxable.


10. Indemnity For Infringement of Intellectual Property Rights: Seller shall have no liability for infringement of any patents, trademarks, copyrights, trade dress, trade secrets or similar rights except as provided in this Part 10. Seller will defend and indemnify Buyer against allegations of infringement of U.S. patents, U.S. trademarks, copyrights, trade dress and trade secrets (hereinafter "Intellectual Property Rights"). Seller will defend at its expense and will pay the cost of any settlement or damages awarded in an action brought against Buyer based on an allegation that an item sold pursuant to this contract infringes in the Intellectual Property Rights of a third party. Seller's obligation to defend and indemnify Buyer is contingent on Buyer notifying Seller within ten (10) days after Buyer becomes aware of such allegations of infringement, and Seller having sole control over the defense of any allegations or actions including all negotiations for settlement or compromise. If an item sold hereunder is subject to a claim that it infringes the Intellectual Property Rights of a third party, Seller may, at its sole expense and options, procure for Buyer the right to continue using said item, replace or modify said item so as to make it noninfringing, or offer to accept return of said item and return the purchase price less a reasonable allowance for depreciation. Notwithstanding the foregoing, Seller shall have no liability for claims of infringement based on information provided by Buyer, or directed to items delivered hereunder for which the designs are specified in whole or part by Buyer, or infringements resulting from the modification, combination or use in a system of any item sold hereunder. The foregoing provisions of this Part 10 shall constitute Seller's sole and exclusive liability and Buyer's sole and exclusive remedy for infringement of Intellectual Property Rights.

If a claim is based on information provided by Buyer or if the design for an item delivered hereunder is specified in whole or in part by Buyer, Buyer shall defend and indemnify Seller for all costs, expenses or judgments resulting from any claim that such item infriges any patent, trademark, copyright, trade dress, trade secret or any similiar right.

11. Force Majeure: Seller does not assume the risk of and shall not be liable for delay or failure to perform any of Seller's obligations by reason of circumstances beyond the reasonable control of Seller (hereinafter "Events of Force Majeure"). Events of Force Majeure shall include without limitation, accidents, acts of God, strikes or labor disputes, acts, laws, rules or regulations of any government or government agency, fires, floods, delays or failures in delivery of carriers or suppliers, shortages of materials and any other cause beyond Seller's control.

12. Entire Agreement/Governing Law: The terms and conditions set forth herein, together with any amendments, modifications and any different terms or conditions expressly accepted by Seller in writing, shall constitute the entire Agreement concerning the items sold, and there are no oral or other representations or agreements which pertain thereto. This Agreement shall be governed in all respects by the law of the State of Ohio. No actions arising out of the sale of the items sold hereunder or this Agreement may be brought by either party more than two (2) years after the cause of action accrues.

Extra care is taken in the preparation of this literature but Parker is not responsible for any inadvertent typographical errors or omissions. Information subject to change without notice. The information in this catalog is only accurate as of the date of publication. For a more current information base, please consult the Parker Industrial Hose Products Division website at "www.parkerhose.com." (?)

MAPP® REGISTERED TRADEMARK AIRCO/BOC CORPORATION (USA) and CANADIAN LIQUID AIR LTD. (Canada) LASSO® REGISTERED TRADEMARK MONSANTO CORPORATION VITON,® HYPALON® and TEFLON® REGISTERED TRADEMARKS DUPONT DOW CORPORATION NOMEX® REGISTERED TRADEMARK OF DUPONT DOW CORPORATION

INDUSTRIAL HOSE & COUPLINGS Index by Series

Series	Page	Series	Page	Series
7031		7228		7353-7357
7057		7229	135	7360
7079		7231	80	7363
7080	,		79	7372
7092	,		83	7373
7093				7385
7093CW	,		53	7386
7094			83	7392
7095	,		54	7393
7096	,			7396
7101			64	7397
7107				7540
7108	,			7541
7109				7542
7110			64	7545
7110 7114				7547
				7560
7119				7560
7120				
7121				7570
7122			94	7574BTF.
7124			94	7574BTN
7126				7582
7132			37	7610
7134			10	7611
7137			11	7612
7139			60	7613
7140			60	7615
7141	136	7281	28	7628
7142	136	7284	30,111	7657
7143	45,114	7286	95	7658
7161	24,126	7288	96	7661
7170	81	7289	96	7670
7172	138	7290	72	7672
7173	65	7293	138	7674
7174	65	7300	73	7676
7180			70	7684
7186			40	7692
7187			40	Hydro-Air
7201			105	Call Signa
7204				Therm-O-
7208				Therm-O-
7209				Contracto
7210				Hose - P
7210				SAE 30R7
7212				and Vap
				anu vap
7216				
7217				
7218				
7222				
7224		/338	92	

Series	Page
7353-7357	56
7360	
7363	
7372	
7373	
7385	
7386	
7392	
7393	
73962	
73972	
7540	
7541	
7542	
7545	
7547	
7560 5	
7561 5	
7570	
7574BTF	,
7574BTN	
7582	
7610	
7611	
7612	
7613	
7615	
7628	
7657	
765815	
7661	154
7670	155
7672	156
7674	157
7676	158
7684	159
7692	149
Hydro-Aire	33,129
Call Signal Tubing	
Therm-O-Blue	
Therm-O-Red	32,123
Contractor Water	
Hose - PVC	122
SAE 30R7 Fuel Line	
and Vapor Emission	/5

CONTENTS

Acid & ChemicalPagePageSeries
Paint Fluid Hose
THORO-SPRAY High Pressure Spray Hose137180
Anhydrous Ammonia Hose
(Stainless Steel Reinforced)
Anhydrous Ammonia Hose
(Nylon Reinforced)
POLY-CHEM Corrugated Hose107274
POLY-CHEM Hose
BLUE THUNDER UHMW Hose127373

Air & Multi-Purpose

7092,7093	GST II Air & Water Hose - Green	187031,7057

MPT II Air & Water Hose - Red .20 7094,7095 SUPER-FLEX GS Air & Water Hose - Red .21 7322,7323 SUPER MPT Hose - Red .22 7396,7397 THORO-FLO Multi-Purpose Hose - Red
SUPER MPT Hose - Red
SUPER MPT Hose - Red
GRIZZLY 500 Multi-Purpose Hose
GRIZZLY 500 Multi-Purpose Hose
DAY-FLO Special Purpose Hose - Red
WHIPPET 200 Air Hose
MAXIMAIRE Heavy Duty Non-Conductive
Air Hose
MPW - 1000 Multi-Purpose Hose
JIFFY HOSE Air Hose - MSHA
JIFFY FLEX 250
THORO-BRAID Air Hose - MSHA
STINGER II Mine Air & Water Hose
DRAGON BREATH Hot Air Hose
YELLOW BIRD Air & Water Hose
MAXIFLEX Air Hose
HYDRO-AIRE PVC Hose
THERM-O-BLUE ORS Hose
THERM-O-RED ORS Hose

Fire Suppression

Fire Engine Corrugated Suction Hose	7209
Fire Engine Suction Hose	57210
Booster 800 High Pressure Hose	7270
YELLOW BIRD PVC Fire Hose	7540

Food Handling

Food Product Discharge Hose
Food Suction & Discharge Hose
Butyl Rubber Tube
Food Suction & Discharge Hose
Nitrile Rubber Tube
ECW Economy White Washdown Hose427079
HDW Creamery Washdown Hose
PWD High Pressure Washdown Hose457143
BLUE RIBBON Pressure Washer Hose457247
WILDCATTER Washdown Hose
DYNAFLEX PVC Trans. Suction/Discharge Hose447570
DYNAFLEX PVC Suction Hose - FDA - Med. Duty 44 7582

Material Handling

DRILINE Cement Hose
Plaster & Concrete Hose - 800 PSI
Sand Blast Hose - 4 Ply
Sand Blast Hose - 2 Ply
SELECTAPIPE Hose
Rock Dust Hose - MSHA
DYNAFLEX PVC Standard Duty Suction Hose
DYNAFLEX PVC Multi-Purpose Suction Hose
DYNAFLEX PVC Trans. Suction/Discharge Hose

Petroleum - DispenserPag	ge	Series
SOFT-FLEX 2000 Gas Pump Hose -		
UL330/ULC	1:	7114
SUPER-FLEX 2000 Gas Pump Hose -		
UL330/ULC	1	7124
FLEX-EVER ULTIMATE VR		
Active Vapor Recovery System64	4	7246BVX
FLEX-EVER ULTIMATE II VR		
Active Vapor Recovery Hose64		
Farm Pump Hose	5	7173,7174
FLEX-EVER 2000 Gas Pump Hose -		
UL330/ULC		
FLEX-EVER 2000 Marine Refueling Hose60		
PETROFLEX 2000 VR Hose with Venturi 62	2	7574BTF
PETROFLEX 2000 VR Hose		
without Venturi63	3	7574BTN

Petroleum - LP Gas

L.P. Gas Vapor Hose	82	7122
L.P. Gas Hose - UL 21, CGA Type I	78	7132
L.P. Gas Hose - UL 21, CGA Type I	79	7232
L.P. Gas Hose - UL 21, CGA Type I -		
Stainless Steel	80	7231
L.P. Gas Hose - UL 569, CGA Type I	81	7170
L.P. Gas Hose - UL 21, CGA Type I -		
Rubber Cover	83	7233,7243

Petroleum - Oil Field

BS & W [™] Oilfield Suction Hose - Smooth Cover
BS & W [™] Oilfield Suction Hose -
Corrugated Cover
WILDCATTER [®] Hose
WILDCATTER [®] Hot Oiler Hose
MPW - 1000 [®] Multi-Purpose Hose

Petroleum - Transport

Deadman Twin Sensing Hose - Red & Green747139 Twin Sensing Hose - Green & Yellow747140 SAE 30R7 Fuel Line & Vapor Emission Hose82Swan TRANSLITE Tank Truck Hose - Black
Heavy Duty Fuel Suction and Discharge hose707330
Transport Fuel Discharge Hose -
Softwall - Red
MPW - 1000 Multi-Purpose Hose
GOLD LABEL Aircraft Refueling Hose737300 Oil Suction/Discharge Hose - 200 PSI70
Heavy Duty Fuel Discharge Hose

Special Applications

Paint Fluid Hose - Nylon Tube	.90	7108
Conduit Hose - Reinforced - US MSHA	.91	7337
Conduit Hose - Non-Reinforced - US MSHA	.92	7338
Signal Call Tubing	.90	Swan

Steam

MPW - 1000 Multi-Purpose Hose
STEAM-LANCE 150 Steam Cleaner Hose977250
STEAM-LANCE 250 Steam Hose - Black
DRAGON BREATH Butyl Steam Hose - Black957286
DRAGON BREATH 250 Steam Hose - Red

Water	.Page	.Series
GST II Air & Water Hose - Green	118	7031,7057
ECW Economy White Washdown Hose		
HDW Creamery Washdown Hose		
GST II Air & Water Hose - Black	.122 .	7093CW
MPT II Air & Water Hose		
(Non-Conductive) - Red		
GRIZZLY 500 Multi-Purpose Hose	.113	.7107
PWD High Pressure Washdown Hose		
THORO-SPRAY High Pressure Spray Hose .		
DYNAFLEX PVC Trans. Suction/Discharge Hose	.128 .	7570
Heater Hose	.125	.7186
MPW - 1000 Multi-Purpose Hose		
BS & W Oilfield Suction Hose - Smooth Cover		
JIFFY HOSE Air Hose - MSHA		
JIFFY FLEX 250	.126	.7161
HYDRO-SPRAY Car Wash Hose		
BLUE RIBBON Pressure Washer Hose		
DAY-FLO Water Suction Hose		
Pressure Washer Hose		
STINGER II Mine Air & Water Hose		
THORO-BRAID Air Hose - MSHA YELLOW BIRD Air & Water Hose		
DAY-FLO Water Discharge Hose		
DAY-FLO Ultra Light Water Discharge Hose		
DAY-FLO Heavy Duty Water Discharge Hose		
DAY-FLO Medium Duty Water Discharge Hose		
SUPER-FLEX GS Air & Water Hose - Red		
SUPER MPT Hose - Red	121	7396 7397
SUPER-FLEX Heavy Duty		
Water Suction Hose	.102	7325
WILDCATTER Washdown Hose	.117	.7360
Furnace Door Coolant Hose - Softwall	.130	.7385
Furnace Door Coolant Hose - Hardwall	.130	.7386
SUPER-FLEX Water Suction Hose		
GULLY WASHER PVC Discharge Hose -		
Standard Duty GULLY WASHER PVC Discharge Hose -	.109	.7541
GULLY WASHER PVC Discharge Hose -		
Medium Duty GULLY WASHER PVC Discharge Hose -	.109	.7542
GULLY WASHER PVC Discharge Hose -		
Heavy DutyGULLY WASHER PVC Discharge Hose -	.110	.7545
Light Duty	110	7547
Light Duty DYNAFLEX PVC Multi-Purpose		./ 0+/
Suction Hose	.104	.7561
Contractor Water Hose - PVC	.122	.Swan
HYDRO-AIRE PVC Hose	.129	.Swan
THERM-O-BLUE ORS Hose	.124	.Swan
THERM-O-RED ORS Hose	.123	.Swan

Welding

SIAMEEZ Twin Welding Hose - Grade T 132 7109
SIAMEEZ Twin Welding Hose - Grade RM1337110
Single Line Welding Hose - Grade R -
Acetylene Line
SIAMEEZ Twin Welding Hose - Grade R 134 7126
Single Line Welding Hose -
Grade T - Fuel Gas Line
Non-Conductive Cable Cover - Spiral
Welding and Scarfing Hose -
Red - Acetylene Line
Oxygen Charging Hose

Couplings

DRAGON BREATH Steam Cplgs	
Female Wing Nut	.1447610
Universal Type Couplings	.1477611
DRAGON BREATH Steam Adapters	
O-Ring - Viton	.1457612

DRAGON BREATH Steam Cplgs
Female Ultimate Grip Nut
Interlocking Clamp Type Couplings
Barbed Inserts
Petroleum Transfer Hose Couplings -
Permanent
Gasoline Vapor Recovery Hose Clamp1527658
PETROFLEX 2000 O-Ring Replacement1537658
Crimp Couplings
Combination Nipples
EZ-FLO Couplings - Plain Steel
EZ-FLO Couplings - 304 Stainless Steel1577674 EZ-FLO Ferrules - 304 Stainless Steel
or Plain Steel
FLEX-EVER ULTIMATE Active Vapor Recovery
O-Ring replacements
Interlocking Clamps
Daylok Beaded Hose Ends
Duck and Rubber Flanges161

READ THIS PAGE BEFORE USING ANY OF THE INFORMATION IN THIS CATALOG

This catalog is a guide in selecting the proper hose for the applications listed herein. It contains many cautions, warnings, guidelines and directions for the safe and proper use of Parker Hose. All of these guidelines should be clearly understood before specifying or using any hoses.

▲ WARNING – SAFETY NOTE

Failure to follow recommended application information and recommended procedures for selection, installation, care, maintenance and storage of hose, couplings or hose assemblies may result in failure to perform properly and may result in damage to property and serious bodily injury. Make sure that hose selected for any application is recommended for that service. Application information is given with each hose or coupling listing in the Parker catalog. Refer to the Safety and Technical Data section of this catalog for information regarding safety, care, maintenance and storage. Contact Parker or your local Parker Distributor for assistance.

In any application, there may be inherent risk of bodily injury or property damage and the user is responsible for implementation of adequate safety precautions. It is the responsibility of the person supplying the hose to advise the user of proper instructions for the safe use and/or precautions and to warn the user of consequences of failure to heed such instruction. Should a hose assembly fail during use because of excessive pressure, injurious and/or damaging chemicals, elevated temperature materials, explosives or flammable materials, then serious bodily injury or destruction of property could result from impelled couplings, whipping hose, high pressure or high velocity discharge, chemical contact, high temperature materials, explosion or fire.

Coupled Assemblies: In this catalog Parker lists the recommended working pressures and safety factors for each type and size of Parker Industrial Hose. The choice of coupling style and the attachment method must be capable of achieving the rated burst pressure of the hose. If the burst capability of the coupled assembly is less than that of the hose, the recommended working pressure of the assembly must be reduced proportionately to maintain the safety factor recommended for the hose. For example:

Hose A: Catalog rating = 250 PSI WP, 4:1 Safety Factor = 1000 PSI Minimum burst. Assembly using Hose A: <u>Capable</u> of 800 PSI burst. Divide by 4 (safety factor) = 200 PSI WP rating for the assembly.

All design and dimensional data shown in this publication is subject to change without notice. Working pressures, corrosion data and other technical information have been prepared from actual test results and other data considered to be reliable. However, no responsibility can be assumed for the accuracy of this information under varied field conditions and it should be considered as a recommendation only and not a guarantee.

CHEMICAL HOSE

WARNING \triangle : A failure of chemical hose in service can result in injury to personnel or damage to property. All chemical hose manufacturers recommend specific hose constructions to handle various chemicals. THE MANUFACTURER SHALL BE CONSULTED TO DETERMINE THAT PARTICULAR HOSE MAY BE USED TO HANDLE A SPECIFIC CHEMICAL.

Do not use chemical hose at temperatures or pressures above those recommended by the manufacturer. All operators must be thoroughly trained in the care and use of this hose and must, at all times, wear protective clothing. A hose or system failure could cause the release of a poisonous, corrosive or flammable material.

Detailed information concerning storage, care and maintenance may be found in the Hose Handbook published by the Rubber Manufacturer's Association, 1400 K Street, NW, Washington, DC 20005 and in SAE Recommended Practices J1273.

IMPORTANT

Parker recommends only those applications of products specified in Parker product literature. Parker disclaims any liability for use of its products in applications other than those for which they were designed.

INDUSTRIAL HOSE SERVICE LIFE

All rubber products, including Industrial Hose, have a limited life on a given application. Assuming the correct hose has been selected for the application, this service life can be adversely affected by many variable conditions. The major ones are:

- Exposure to severe external abuse, such as kinking, bending, high end pull, crushing or abrasion.
- Exposure to higher-than-rated working pressures or to high surge pressures.
- Exposure to higher-than-rated temperatures.
- Misapplication or exposure to corrosive fluids or gases outside the range of suitable applications.
- External abuse Hoses should be placed where they will not be run over by equipment or subjected to high end pull. Hoses should not be bent below recommended minimum bend radius. This could result in kinking the hose or reducing its pressure resistance. Large diameter hoses also may require additional support to reduce external abuse.
- 2. Hose & System Pressures In establishing and determining pressures related to hose and the systems to which they are applied, it is necessary to consider separately the characteristics of the hose and the system.

The system (or device or application) can have several pressures depending on pressure sources and surges imposed by the operator or mechanical components.

A given hose has a fixed characteristic with respect to the pressure it can withstand (and how it is applied) and still give satisfactory life. High Temperatures – High temperatures can degrade rubber stocks very quickly, resulting in short service life.

Where external temperatures are higher than normal ambient, contact Parker/Dayco Products, Inc. for recommendations.

- Misapplication All Industrial Hoses are designed for a specific or related application. They should not be used for any other application without first contacting Parker/Dayco for recommendations.
- Internal Abrasion For applications of a highly abrasive nature where the hose makes one or more bends, hose should be rotated 90° periodically to lengthen service life.

The hose manufacturer established, through design and testing, the recommended rated working pressure for the hose. It is the responsibility of the user to accurately determine the system pressure. Steady state pressure can be measured readily by gauges. Surges are difficult to measure and may require the use of electronic pressure sensing devices. Also, surge values depend on so many variables that a series of tests are usually required to obtain a valid set of readings. However, if there are extreme surges in the normal operation, or if there is the likelihood of abnormal operation of the system, the magnitude of these pressures must be determined.

Considering the recommended rated working pressure of the HOSE ASSEMBLY and the various pressures of the SYSTEM, the hose is matched to the system using proper application engineering principles.

WARRANTY LIMITED WARRANTY FOR THE LIFE OF THE MERCHANDISE

Merchandise is warranted to be free from defects in material or workmanship for the life of the merchandise. Parker/Dayco will, at its option, replace or repair any merchandise proved defective in material or workmanship, or both, during the warranty period. This is the exclusive remedy.

For warranty service, please contact Parker Industrial Hose Division, 17295 Foltz Industrial Parkway, Cleveland, OH 44136.

THERE IS NO OTHER EXPRESS WARRANTY, IMPLIED WARRANTIES, INCLUDING THOSE OF MER-CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE LIMITED TO THE EXPRESS WARRANTY PERIOD. LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES UNDER ANY AND ALL WARRANTIES ARE EXCLUDED TO THE EXTENT EXCLUSION PERMITTED BY LAW. Some states do not allow the exclusion or limitation of incidental or consequential damages, and some states do not allow limitation on how long an implied warranty lasts, so the above limitation and exclusion may not apply to you. The warranty gives you specific legal rights and you may also have other rights which vary from state to state.

How To Select a Hose

Several things must be known before the proper hose can be selected for any hose application. The acronym STAMPED can be the key to having the required information in most cases.

S IZE –	The appropriate inside and outside diameters and length of the hose should be determined.
T EMPERATURE –	The maximum temperature of the material being conveyed.
APPLICATION -	External conditions including abrasion, climate, heat, flexing, crushing, kinking and degrees of bending.
MATERIAL –	The composition of the substance being conveyed and compatibility with the hose.
P RESSURE –	The maximum pressure of the system, including pressure spikes.
Ends –	The appropriate end connections at attachment method for the application.
DELIVERY -	Testing, quality, packaging and delivery requirements.

Complicated applications or an application requiring special made-to-order hose may require more detailed information. For those occasions, a detailed list of information needed is provided in the MTO or Made-To-Order section.

Catalog Selection

To find the Parker Hose to fit the requirements:

- A. If you know the Parker series number, find the page number in the "Index by Series" on page 3.
- B. If Parker series number is unknown, see the Table of Contents on pages 4-5. It is, like the catalog, divided into various application categories.
- C. If you can't find the right hose or, have special requirements, call Parker's Customer Satisfaction Center at 1-800-283- 2926.

The hose listings in this catalog give the detailed information necessary to select the correct hose for most applications. You will also find the general reference information in the Safety and Technical Data section. The hose listings include recommended coupling styles. Couplings are listed in a separate section beginning on page 139.

Glossary of Abbreviated Terms Used in Hose Listings:

I.D. — Inside Diameter of hose tube opening.

Ply, Spirals, or Braid – Layers of reinforcement.

O.D. — Outside Diameter of hose.

Approx. Wt. Per 100 ft. — Weight of hose, normally listed as pounds per 100 foot length.

- Min. Bend Radius (in) Minimum Radius to which hose can be bent before sustaining damage or reduced life.
- Max. Recom. WP (PSI) Maximum Recommended Working Pressure expressed in Pounds per Square Inch.
- Min. Burst (PSI) Minimum Burst Pressure expressed in Pounds per Square Inch, which is the lowest pressure at which the hose is designed to burst under prescribed conditions. Not to be used as working pressure

Acid & Chemical

	page	series
POLY-CHEM [®] Corrugated Hose	. 10	. 7274
POLY-CHEM [®] Hose	. 11	. 7276
BLUE THUNDER [™] UHMW Hose	. 12	. 7373T
Paint Fluid Hose	. 13	. 7108
THORO-SPRAY® High Pressure Spray Hose	. 13	. 7180
Anhydrous Ammonia Hose (Stainless Steel Reinforced)	. 14	. 7261
Anhydrous Ammonia Hose (Nylon Reinforced)	. 15	. 7262

Due to continual product improvements, Parker/Dayco reserves the right to alter specifications without prior notice.

POLY-CHEM® Corrugated Hose

Series 7274

The Poly-Chem hose is designed to handle many types of chemicals and solvents in both **full suction and discharge applications.** This series has a corrugated cover that provides maximum flexibility for easy handling. The clear cross-linked polyethylene tube will handle many types of chemicals, acids and solvents without leaching and contaminating the product conveyed. Refer to the chemical guide in the Safety and Technical Data section of this catalog, or contact Parker/Dayco to determine compatibility with specific chemicals and applications. 4:1 Design factor

Tube: Cover:	Cross-Linked Polyethylene (XLPE) Corrugated green EPDM with yellow stripe
Reinforcement:	Textile Plies with Helix Wire
Temp. Range:	-20° F to +160° F (WARNING! Check chemical temperature
	& concentration)
Branding:	PARKER/DAYCO SERIES 7274 CORRUGATED
	POLY-CHEM [®] XXX PSI MAX WP MADE IN USA 001
Brand Description:	Tape Brand - Yellow stripe with green letters

Part No.	ID (in.)	ID (mm)	Reinf. Plies	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
7274-1002 7274-1252 7274-1502 7274-2002 7274-2504 7274-3002 7274-4002	1 1 1/4 1 1/2 2 2 1/2 3 4	25.4 31.8 38.0 50.8 63.5 76.2 101.6	2 2 2 2 2 4 4 4	1.475 1.710 2.000 2.545 3.169 3.685 4.710	38.6 43.4 50.8 64.6 80.5 93.6 119.6	64 63 81 111 168 213 286	3.0 4.0 5.0 6.0 7.0 7.0 8.0	200 200 200 200 150 150 150

LENGTHS: COUPLINGS:

100 ft., lengths up to 200 ft. available on quotation. Coupling style 7, 8, 10, 11, 14, 15, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

WARNING! Combination nipple with bands reduces the working pressure of the assembly to less than the hose's max working pressure. Refer to NAHAD Assembly Guidelines for working pressure.

POLY-CHEM[®] Hose Series 7276

POLY-CHEM[®] is a versatile hose handling many types of chemicals and solvents in both **full suction and discharge applications.** Clear, cross-linked polyethylene tube will not leach and contaminate product conveyed. Refer to the chemical guide in the Safety and Technical Data section of this catalog, or contact Parker/Dayco to determine compatibility with specific chemicals and applications. 4:1 Design factor

(XLPE) ripe §! Check chemical temperature
r

Branding:PARKER/DAYCO SERIES 7276 POLY-CHEM® HOSE
XXX PSI MAX WP MADE IN USA 001Brand Description:Tape Brand - Yellow stripe with green letters

Part No.	ID (in.)	ID (mm)	Reinf. Plies	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
7276-752	3/4	19.1	2	1.250	31.8	48	3.0	200
7276-1002	1	25.4	2	1.475	37.5	60	4.0	200
7276-1252	1 1/4	31.8	2	1.715	43.6	69	5.0	200
7276-1502	1 1/2	38.0	2	2.000	50.8	97	6.0	200
7276-2002	2	50.8	2	2.545	64.6	133	8.0	200
7276-3002	3	76.2	4	3.675	93.3	259	12.0	150
7276-4002	4	101.6	4	4.720	119.9	357	16.0	150
7276-6004	6	152.4	4	6.913	175.6	773	40.0	150

LENGTHS: COUPLINGS: 100 ft., lengths up to 200 ft. available on quotation. Coupling style 7, 8, 10, 11, 14, or for other coupling recommendations

refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details. WARNING! Combination nipple with bands reduces the

working pressure of the assembly to less than the hose's max working pressure. Refer to NAHAD Assembly Guidelines for working pressure.

1	Acid & Chemical
	Air & Multi- Purpose
	Fire Suppression
	Food Handling
	Made To Order
	Material Handling
	Petroleum Dispenser
	Petroleum Transport
	Petroleum LP Gas
	Oil Field
	Special Applications
	Steam
	Water
	Welding
	Couplings & Equipment

SERIES

6 9

Safety & Tech Data

BLUE THUNDER[™] UHMW Hose Series 7373T

WARNING! Elevated temperatures can change chemical resistance ratings. Most chemical resistance guides are based on testing performed at ambient/70°F (21°C) and higher temperatures are likely to change these ratings. Many chemicals will become more agressive as temperatures increase, reducing the ability of materials to withstand them. It is the users responsibility to determine if the hose is compatible with the application. Compatibility information can be requested from Parker/Dayco for chemicals at elevated temperatures, it will be necessary for users to perform compatibility testing if no data exists for the chemical at the temperature desired.

Also, coupling attachment becomes even more critical at elevated temperatures. Only permanent crimp, internal expanded or swage style fittings should be installed for applications with temperatures above 125°F. The working pressure of banded assemblies below 125°F should be reduced to maintain a 4:1 design factor based on the assembly burst capability.

This corrugated hose provides flexibility and durability in chemical **full suction and discharge applications.** The clear Ultra High Molecular Weight (UHMW) polyethylene tube will handle 98% of the most common chemicals without leaching and contaminating the product being conveyed. Refer to the chemical guide in the Safety and Technical Data section of this catalog, or contact Parker/Dayco to determine compatibility with chemicals and applications. 4:1 Design factor

Tube:	Clear Ultra High Molecular Weight Polyethylene (UHMW)
Cover:	Corrugated Blue EPDM
Reinforcement:	Textile Plies with Helix Wire
Temp. Range:	-40° F to +250° F (WARNING! Check chemical temperature
	& concentration)
Branding:	PARKER/DAYCO SERIES 7373 BLUE THUNDER™
-	UHMW TUBE MAX WP XXX PSI MADE IN USA 001
Brand Description:	Tape Brand - Yellow ink lettering
•	

Part No.	ID (in.)	ID (mm)	Reinf. Plies	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
7373T-1000 7373T-1250 7373T-1500 7373T-2000 7373T-3000 7373T-3000 7373T-4000	1 1 1/4 1 1/2 2 3 4	25.4 31.8 38.0 50.8 76.2 101.6	2 2 2 4 4 4	1.475 1.700 1.965 2.600 3.645 4.675	37.5 43.2 49.9 66.0 92.6 118.7	61 65 83 139 218 309	3.0 4.0 5.0 6.0 7.0 8.0	200 200 200 200 200 150

LENGTHS: 100 ft., lengths up to 200 ft. on quotation.

COUPLINGS: Coupling style 7, 10, 11, 14, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

WARNING! Combination nipple with bands reduces the working pressure of the assembly to less than the hose's max working pressure. Refer to NAHAD Assembly Guidelines for working pressure.

Paint Fluid Hose Nylon Tube Series 7108

Designed to handle both water and oil based paints in medium pressure applications. The Nylon 6 tube will handle ketone solvents, lacquers, thinners and paints with high aromatics, as well as many chemicals. Very flexible for ease of handling.

4:1 Design factor

WARNING! Do not use in high pressure paint spray applications requiring a statically conductive hose.

Tube:	Nylon 6/6.6
Cover:	Black Neoprene
Reinforcement:	Multiple textile spirals
Temp. Range:	0° F to +200° F
Branding:	PARKER/DAYCO SERIES 7108 PAINT FLUID HOSE
-	3/8 ID (9.5MM) XXX PSI MAX WP MADE IN USA
	(DATE CODE)
Brand Description:	Ink Brand - White letter color

Part No.	ID (in.)	ID (mm)	Reinf. Spirals	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
7108-251	1/4	6.4	2	0.488	12.4	9	3.0	500
7108-381	3/8	9.5	2	0.680	17.3	16	4.0	500
7108-501	1/2	12.7	2	0.875	22.2	25	5.0	750

LENGTHS: Random lengths on nominal 500 ft. reels, 3 piece max., 50 ft. minimum length.

COUPLINGS: Coupling style 2, 3, 8, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

THORO-SPRAY[®] High Pressure Spray Hose – 800 PSI Series 7180

Designed for agricultural and residential high pressure spray applications. The tube will handle most pesticides as well as liquid fertilizers. The cover is non-marking for safe use in residential areas. 4:1 Design factor

Tube:	Black Nitrile
Cover:	Green Nitrile/PVC
Reinforcement:	Multiple textile braids
Temp. Range:	-20° F to +180° F
Branding:	PARKER/DAYCO USA 7180 THORO-SPRAY®
-	HOSE - 800 PSI MAX WP
Brand Description:	Ink Brand - Black letter color

Part No.	ID (in.)	ID (mm)	Reinf. Braids	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
7180-252	1/4	6.4	2	0.625	15.9	15	3.0	800
7180-382	3/8	9.5	2	0.750	19.1	20	4.0	800
7180-502	1/2	12.7	2	0.938	23.8	29	5.0	800
7180-752	3/4	19.1	2	1.250	31.8	48	6.5	800

LENGTHS: Random lengths on nominal 500 ft. reels, 5 piece maximum. **COUPLINGS:** Coupling style 2, 3, 8, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

Anhydrous Ammonia Hose

Series 7261–Stainless Steel Reinforced

WARNING! For Anhydrous Ammonia use ONLY. Do not use in LP Gas, Natural Gas or refrigeration applications. Do not use male swivel couplings. Use Parker recommended couplings ONLY!

WARNING! Contact with Anhydrous Ammonia will burn skin and is especially damaging to the eyes and lungs. This is true for its liquid and gaseous (vapor) state. Many accidents involving NH3 have occurred by using the wrong hose. NH3 hose must be specially compounded and constructed to handle the material. NEVER use a hose that is not designed for NH3 because it may fail very quickly and cause bodily injury. It is, therefore, especially important to make sure that only Anhydrous Ammonia hose is recommended and used for this service. Refer to RMA Publications IP-14 "Anhydrous Ammonia Hose, specifications" and IP-11-2 "Anhydrous Ammonia Hose, Manual for Maintenance, Testing and Inspection".

Designed to handle anhydrous ammonia up to 350 PSI working pressure. Corrosion resistant high tensile stainless steel braid provides strong and flexible reinforcement. Meets or exceeds RMA specifications. Made to order only. 5:1 Design factor

Tube: Cover: Reinforcement:	Black EPDM Perforated Black EPDM w/silver stripe One or multiple stainless steel braids, 1 textile braid
Temp. Range:	-40° F to +180° F
Branding: (Side 1)	PARKER/DAYCO USA 7261 SS ANHYDROUS AMMONIA- 2003-REMOVE NO LATER THAN 2010-350 PSI MAX WP RMA(BATCH CODE)-CAUTION ANHYDROUS AMMONIA USE ONLY-2003-REMOVE NO LATER THAN 2010
(Side 2)	Solid silver stripe
Brand Description:	Side 1 - embossed, Side 2 - tape

Part No.	ID (in.)	ID (mm)	Reinf. Braids	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
7261-1001	1	25.4	1	1.500	38.1	78	12.0	350
7261-1251	1 1/4	31.8	1	1.781	45.2	105	16.5	350
7261-1501K	1 1/2	38.1	1	2.032	51.6	114	20.0	350
7261-2002K	2	50.8	2	2.625	66.7	177	25.0	350

AVAILABILITY: Made-to-order and subject to minimum runs.

Sold to authorized couplers only.

LENGTHS: 1 in., 200 ft. nom. +/- 10%; 3 pcs. max., 45 ft. min. – 1-1/4 in., random 45 through 100 ft., 1 pc. per carton – 1-1/2 in. and 2 in. random lenghts, 150 ft. pack, max. 3 pieces, 40 ft. min. length – in cartons.
 COUPLINGS: Only Parker/Dayco permanent crimped couplings (refer to Parker/

COUPLINGS: Only Parker/Dayco permanent crimped couplings (refer to Parker/ Dayco Industrial Hose Crimp Specifications). See Coupling Style Pages in the back of the catalog for coupling details.

Anhydrous Ammonia Hose Series 7262–Nylon Reinforced

WARNING! For Anhydrous Ammonia use ONLY. Do not use in LP Gas, Natural Gas or refrigeration applications. Do not use male swivel couplings. Use Parker recommended couplings ONLY!

WARNING! Contact with Anhydrous Ammonia will burn skin and is especially damaging to the eyes and lungs. This is true for its liquid and gaseous (vapor) state. Many accidents involving NH3 have occurred by using the wrong hose. NH3 hose must be specially compounded and constructed to handle the material. NEVER use a hose that is not designed for NH3 because it may fail very quickly and cause bodily injury. It is, therefore, especially important to make sure that only Anhydrous Ammonia hose is recommended and used for this service. Refer to RMA Publications IP-14 "Anhydrous Ammonia Hose, specifications" and IP-11-2 "Anhydrous Ammonia Hose, Manual for Maintenance, Testing and Inspection".

Designed to handle anhydrous ammonia up to 350 PSI working pressure. Degradation resistant tensile braids provide strong and flexible reinforcement. Meets or exceeds RMA and TFI (The Fertilizer Institute) specifications. Made to order only. 5:1 Design factor

Tube: Cover: Reinforceme Temp.Range		Black EPDM Perforated Black EPDM w/green stripe Multiple nylon braids. -40° F to + 180° F
Branding:		PARKER/DAYCO USA 7262 NYLON ANHYDROUS AMMONIA-2003-REMOVE NO LATER THAN 2009-350 PSI MAX WP RMA (BATCH CODE) CAUTION ANHYDROUS AMMONIA USE ONLY-2003-REMOVE NO LATER THAN 2009
Brand Descr	(Side 2) iption:	

Part No.	ID (in.)	ID (mm)	Reinf. Braids	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
7262-502 7262-752 7262-1002 7262-1252 7262-1502K 7262-2003K	1/2 3/4 1 1 1/4 1 1/2 2	12.7 19.1 25.4 31.8 38.1 50.8	2 2 2 2 2 2 2 3	0.937 1.250 1.500 1.750 2.000 2.750	23.8 31.8 38.1 44.5 50.8 69.9	29 47 57 68 81 166	5.0 8.0 10.0 12.0 14.0 16.0	350 350 350 350 350 350

AVAILABILITY: Made-to-order and subject to minimum runs.

	Sold to authorized couplers only.
LENGTHS:	1/2 in. through 1 in., random lengths on reels, 5 pc. max.,
	50 ft. min. – 1-1/4 in., random 45 through 100 ft., 1-1/2 in. and 2 in.
	random lenghts in 150 ft. pack, max. 3 pieces, 40 ft. min.
length –	in cartons.
COUPLINGS:	Only Parker/Dayco permanent crimped couplings (refer to Parker/
	Dayco Industrial Hose Crimp Specifications). See Coupling Style
	Pages in the back of the catalog for coupling details.

Welding

Couplings & Equipment

Safety & Tech Data

Acid & Chemical

Air & Multi-Purpose

GST [®] II General Service Air & Water Hose	page . 18	series . 7031, 7057 7092, 7093 7096
Service Station Air Hose MPT [®] II Multi-Purpose Air & Water Hose (Oil Resistant/Non-Conductive) SUPER-FLEX [®] GS General Service Air & Water Hose	. 20	. 7094, 7095 . 7322, 7323
SUPER MPT Hose	. 23	. 7212
JIFFY FLEX 250 THORO-FLO® Multi-Purpose Hose	. 25	. 7101, 7119
DAY-FLO [®] Special Purpose Hose GRIZZLY [™] 500 Multi-Purpose Hose WHIPPET [®] 200 Air Hose	. 26	. 7107
MAXIFLEX® Air Hose	. 27	. 7308
DRAGON BREATH® Hot Air Hose	. 28	. 7281
THORO-BRAID® Air Hose – MSHA	. 29	. 7251
YELLOW BIRD® Air & Water Hose	. 30	. 7284
THERM-O-RED [®] ORS Hose	. 32	. Swan

GST[®] II General Service Air & Water Hose Series 7031–GREEN 7093–BLACK 7057–BLUE 7096–YELLOW 7092–BR, RED

An economical and versatile general purpose hose, which is excellent for air & water service as well as many agricultural chemicals including LASSO® herbicide. The EPDM tube and cover resists heat, sunlight, ozone and weathering. The GST II hose exceeds RMA class C medium oil resistance requirements. Suitable for applications such as oil mist lubricating air lines, but NOT suitable for the transfer of petroleum products. Closely plied reinforcement of high tensile textile cord provides excellent coupling retention and kink resistance. 4:1 Design factor

Tube: Cover: Reinforcement: Temp. Range: Branding Example:

Brand Description:

Black EPDM EPDM - colors referenced above Multiple textile spirals -40° F to +212° F PARKER/DAYCO SERIES 7031 GST[®] II I.D. (IN & MM) XXX PSI MAX WP MADE IN USA Ink Brand - White letter color

Part No.	ID (in.)	ID (mm)	Reinf. Spirals	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
-19200	3/16	4.8	2	0.437	11.1	6	2.0	200
-19300	3/16	4.8	2	0.437	11.1	8	2.0	300
-25200	1/4	6.4	2	0.500	12.7	9	2.5	200
-2520050	1/4	6.4	2	0.500	12.7	9	2.5	200
-25300	1/4	6.4	2	0.550	14.0	12	3.3	300
-2530050	1/4	6.4	2	0.550	14.0	12	3.3	300
-31200	5/16	7.9	2 2 2 2	0.594	15.1	13	3.3	200
-3120050	5/16	7.9	2	0.594	15.1	13	3.3	200
-31300	5/16	7.9	2	0.625	15.9	13	3.5	300
-3130050	5/16	7.9	2	0.625	15.9	13	3.5	300
-38200	3/8	9.5	2 2 2	0.656	16.7	14	3.5	200
-3820050	3/8	9.5	2	0.656	16.7	14	3.5	200
-38300	3/8	9.5	2	0.688	17.5	17	4.0	300
-3830050	3/8	9.5	2 2	0.688	17.5	17	4.0	300
-50200	1/2	12.7	2	0.813	20.7	21	4.5	200
-5020050	1/2	12.7	2	0.813	20.7	21	4.5	200
-50250*	1/2	12.7	2 2	0.844	21.4	23	4.5	250
-5025050	1/2	12.7	2	0.844	21.4	23	4.5	250
-50304	1/2	12.7	4	0.875	22.2	25	5.0	300
-5030450	1/2	12.7	4	0.875	22.2	25	5.0	300
-63200	5/8	15.9	2	0.969	24.6	24	5.5	200
-6320050	5/8	15.9	2	0.969	24.6	24	5.5	200
-63304	5/8	15.9	4	1.062	27.0	30	5.5	300
-6330450	5/8	15.9	4	1.062	27.0	30	5.5	300
-75200	3/4	19.1	2	1.109	28.2	32	6.0	200
-7520050	3/4	19.1	2	1.109	28.2	32	6.0	200
-75304*†	3/4	19.1	4	1.156	29.4	37	6.0	300
-7530450*†	3/4	19.1	4	1.156	29.4	37	6.0	300
-100200	1	25.4	2 2	1.406	35.7	44	7.0	200
-10020050	1	25.4		1.406	35.7	44	7.0	200
-100304	1	25.4	4	1.438	36.5	53	8.0	300
-10030450	1	25.4	4	1.438	36.5	53	8.0	300
-125204	1-1/4	31.75	4	1.781	45.2	77	9.0	200
-150204	1-1/2	38.1	4	2.031	51.6	86	10.0	200
-15020450	1-1/2	38.1	4	2.031	51.6	86	10.0	200
-150204100	1-1/2	38.1	4	2.031	51.6	86	10.0	200

LENGTHS:

Exact length reels (+50 ft./-0 ft.), 90% 1 pc., 10% 2 pc. - 50 ft. min. length. 50 ft. cut lengths are coiled and tied in pallet boxes. *Sizes stocked in green and blue

†Sizes stocked in yellow

Contact Parker or check Price Schedule for availability.

COUPLINGS:

Coupling style 1, 2, 3, 5, 7, 8, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

Service Station Air Hose Series 7092 - RED Series 7093 - BLACK

The EPDM tube and cover provides excellent heat, weather and ozone resistance. Reinforced with high tensile textile reinforcement that provides excellent coupling retention and kink resistance. 4:1 Design factor

Max Rec. Approx. Male Lengths ID WP Thread Weight Length per Size (in.) (lbs.) Part No. (in.) (PSI) Ft. Color Carton 7092RKH-300 1/4300 25 1/43 10 red 7092RKH-600 1/4300 50 1/46 5 red 7092RLB-300 3/8 300 25 3/8 4 red 10 7092RLB-600 3/8 300 50 3/8 8 5 red 7092RMA-300 3/8 200 25 1/4 4 10 red 50 8 7092RMA-600 3/8 200 1/4 5 red 7092RLC-300 3/8 300 25 1/4 4 red 10 50 7092RLC-600 3/8 300 1/48 red 5 7093RKH-300 1/4 300 25 1/4З black 10 50 6 7093RKH-600 1/4 300 1/4 black 5 3/8 25 3/8 10 7093RLB-300 300 4 black 8 7093RLB-600 3/8 300 50 3/8 black 5 25 3/8 200 1/4 10 7093RMA-300 4 black 50 8 3/8 200 1/4 5 7093RMA-600 black 25 7093RLC-300 3/8 300 1/4 10 4 black 7093RLC-600 3/8 300 50 8 5 1/4 black

Service Station Air Hose Assemblies Coupled Lengths Crimped Male & Male Brass NPT

Display Assemblies – Coiled w/ Cardboard Discs w/ Art – Coupled Lengths Crimped Male X Male Brass

Part No.	ID (in.)	Max Rec. WP (PSI)	Approx. Length Ft.	Male Thread Size (in.)	Weight (lbs.)	Color	Lengths per Carton
7092253-KAB	1/4	300	25	1/4	3	red	10
7092253-KAA	1/4	300	50	1/4	6	red	5
7092383-KAB	3/8	300	25	1/4	4	red	10
7092383-KAA	3/8	300	50	1/4	8	red	5
7093253-KAA	1/4	300	50	1/4	6	black	5
7093383-KAA	3/8	300	50	1/4	8	black	5

	Acid & Chemical
	Air & Multi- Purpose
ę.	Fire Suppression
	Food Handling
SERIES	Made To Order
7092 (Material Handling
3ST®II	Petroleum Dispenser
	Petroleum Transport
	Petroleum LP Gas
	Oil Field
	Special Applications

Water

Steam

Welding

Couplings & Equipment

Safety & Tech Data

SERIES 7094 MPT

MPT® II is a premium high quality, economical, multi-purpose hose that is oil resistant, excellent for air and water service and many chemicals. Closely plied reinforcement of high tensile textile cord provides excellent coupling retention and kink resistance. The hose is electrically non-conductive with a minimum resistance of one megohm per inch at 1000 volts DC. MPT II hose exceeds RMA Class A-High Oil Resistance requirements.

4:1 Design factor

Note: Do not use for hot dry air applications.

Tube:	Black Nitrile
Cover:	Red or Black Neoprene
Reinforcement:	Multiple textile spirals
Temp. Range:	-20° F to +212° F
Branding:	PARKER/DAYCO SERIES 7094 MPT® II 3/16 ID (4.8 MM)
-	XXX PSI MAX WP MADE IN USA - ELECTRICALLY
	NON-CONDUCTIVE
Brand Description:	Ink Brand - White letter color

Brand Description:

Ink Brand - White letter color

Part No.	ID (in.)	ID (mm)	Reinf. Spirals	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
-19200	3/16	4.8	2	0.437	11.1	5	1.8	200
-19300	3/16	4.8	2	0.437	11.1	5	1.8	300
-25200	1/4	6.4	2	0.500	12.7	9	2.0	200
-2520050*	1/4	6.4	2	0.500	12.7	9	2.0	200
-25300	1/4	6.4	2	0.550	14.0	12	2.5	300
-2530050*	1/4	6.4	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0.550	14.0	12	2.5	300
-31200*	5/16	7.9	2	0.594	15.1	13	3.0	200
-3120050*	5/16	7.9	2	0.594	15.1	13	3.0	200
-31300	5/16	7.9	2	0.594	15.1	13	3.3	300
-3130050*	5/16	7.9	2	0.594	15.1	13	3.3	300
-38200	3/8	9.5	2	0.656	16.7	15	3.8	200
-3820050*	3/8	9.5	2	0.656	16.7	15	3.8	200
-38300	3/8	9.5	2	0.688	17.5	17	3.8	300
-3830050	3/8	9.5	2	0.688	17.5	17	3.8	300
-50200	1/2	12.7	2	0.813	20.7	21	5.0	200
-5020050*	1/2	12.7	2	0.813	20.7	21	5.0	200
-50250	1/2	12.7	2	0.844	21.4	22	5.0	250
-5025050*	1/2	12.7		0.844	21.4	22	5.0	250
-50304	1/2	12.7	4	0.875	22.2	26	5.0	300
-5030450	1/2	12.7	4	0.875	22.2	26	5.0	300
-63200*	5/8	15.9	2	0.969	24.6	36	5.5	200
-6320050*	5/8	15.9	2	0.969	24.6	36	5.5	200
-63304	5/8	15.9	4	1.062	27.0	37	6.1	300
-6330450*	5/8	15.9	4	1.062	27.0	37	6.1	300
-75200	3/4	19.1	2	1.109	28.2	34	7.5	200
-7520050*	3/4	19.1	2	1.109	28.2	34	7.5	200
-75304	3/4	19.1	4	1.156	29.4	39	6.0	300
-7530450	3/4	19.1	4	1.156	29.4	39	6.0	300
-100200	1	25.4	2	1.406	35.7	50	10.0	200
-10020050*	1	25.4	2	1.406	35.7	50	10.0	200
-100304	1	25.4	4	1.438	36.5	54	8.0	300
-10030450*	1	25.4	4	1.438	36.5	54	8.0	300
-125204	1-1/4	31.75	4	1.781	45.2	77	9.0	200
-150204	1-1/2	38.1	4	2.031	51.6	86	10.0	200
-15020450**	1-1/2	38.1	4	2.031	51.6	86	10.0	200
-150204100*	1-1/2	38.1	4	2.031	51.6	86	10.0	200

AVAILABILITY: * non-stock ** stock in red cover only

LENGTHS:

I.D.

I.D. sizes 3/16 in. through 1 in. are 90% 1 piece, 10% 2 piece-50 ft. min. length. (Total footage on reels is +50 ft./-0 ft. of length shown). 1-1/4 in. and 1-1/2 in. sizes are 70% 1 piece, 30% 2 piece, min. length 50 ft.. Total reel quantity is

±10%

COUPLINGS:

Coupling style 1, 2, 3, 5, 7, 8, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

SUPER-FLEX[®] GS General Service Air & Water Hose Series 7322 - RED – Series 7323 - BLACK

A superior quality general service air and water hose that is a rigid mandrel construction, which produces a TRUE round, concentric hose. Superior adhesion of the hose layers provides endurance in tough applications. All of this added with SUPER flexibility for easier handling. Rated for medium oil resistance for oil mist lubricated air lines; meets RMA class C medium oil resistance, per ASTM D-471. 4:1 Design factor

Tube: Cover: Reinforcement: Temp. Range: Branding:	Black EPDM Black or Red EPDM Textile plies -40° F to +212° F PARKER/DAYCO SERIES 7322 SUPER-FLEX® GS 1-1/4 ID 200 PSI MAX WP GENERAL SERVICE
Brand Description:	MADE IN USA Tape Brand - White letters

Part No.	Pkg.	ID (in.)	ID (mm)	Reinf. Plies	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
-125200 -12520050	200' 50'	1 1/4 1 1/4	31.8 31.8	2	1.741 1.741	44.2 44.2	71 71	7.5 7.5	200 200
-125200100	100'	1 1/4	31.8	2	1.741	44.2	71	7.5	200
-125200A	reel	1 1/4	31.8	2	1.741	44.2	71	7.5	200
-150200	200'	1 1/2	38.1	2	1.985	50.4	82	8.5	200
-15020050 -150200100	50' 100'	1 1/2	38.1 38.1	2	1.985 1.985	50.4 50.4	82 82	8.5 8.5	200 200
-150200A	reel	1 1/2	38.1	2	1.985	50.4	82	8.5	200
-200200 -202050	200' 50'	2 2	50.8 50.8	4	2.568 2.568	65.2 65.2	123 123	12.0 12.0	200 200
-202030	100'	2	50.8	4	2.568	65.2	123	12.0	200

LENGTHS: 50 ft., 100 ft., 200 ft. coils, tied and plastic "tire" wrapped. Reels are 2 pieces, 200 ft. each. No cutting of stock hose. Contact Customer Service for quotation on special hose from factory.

COUPLINGS: Coupling style 2, 3, 7, 8, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details. WARNING! Combination nipple and bands reduces the

working pressure of the assembly to less than the hose's max working pressure. Refer to NAHAD Assembly Guidelines for working pressures.

	Acid & Chemical
	Air & Multi- Purpose
Ş	Fire Suppression
CO 73	Food Handling
22 SUPER-	Made To Order
FLEX®G	Material Handling
S HOSE	Petroleum Dispenser
	Petroleum Transport
	Petroleum LP Gas
	Oil Field
	Special Applications
	Steam
	Water
	Welding
	Couplings & Equipment
	Safety &

Safety & Tech Data

SUPER MPT Hose Series 7396 - RED – Series 7397 - BLACK

A premium oil resistant multi-purpose hose that is a rigid mandrel construction, which produces a TRUE round, concentric hose. Superior adhesion of the hose layers provides endurance in tough applications. All of this added with SUPER flexibility for easier handling. The tube is rated for RMA Class A-High Oil Resistance. The hose is electrically non-conductive with a minimum resistance of one megohm per inch at 1000 volts DC. 4:1 Design factor

Tube: Cover: Reinforcement: Temp. Range: Branding:

C

CC-- 7396 SUPER MPT

Black Nitrile Rubber Black or Red Nitrile/PVC Multiple textile plies -20° F to +212° F PARKER/DAYCO SERIES 7396 SUPER MPT MULTI-PURPOSE HOSE XXX PSI MAX WP ELECTRICALLY NON-CONDUCTIVE MADE IN USA Tape Brand - White letters

Brand Description:

Part No.	Pkg.	ID (in.)	ID (mm)	Reinf. Plies	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
-125200200 -12520050 -125200100 -125200A	200' 50' 100' reel	1 1/4 1 1/4 1 1/4 1 1/4	31.8 31.8 31.8 31.8 31.8	2 2 2 2	1.741 1.741 1.741 1.741 1.741	44.2 44.2 44.2 44.2	70 70 70 70	7.5 7.5 7.5 7.5	200 200 200 200
-150200200 -15020050 -150200100 -150200A	200' 50' 100' reel	1 1/2 1 1/2 1 1/2 1 1/2 1 1/2	38.1 38.1 38.1 38.1	2 2 2 2 2	1.985 1.985 1.985 1.985	50.4 50.4 50.4 50.4	80 80 80 80	8.5 8.5 8.5 8.5	200 200 200 200
-200200200 -20020050 -200200100	200' 50' 100'	2 2 2	50.8 50.8 50.8	4 4 4	2.568 2.568 2.568	65.2 65.2 65.2	122 122 122	12.0 12.0 12.0	200 200 200
-125300200 -12530050 -125300100 -125300A	200' 50' 100' reel	1 1/4 1 1/4 1 1/4 1 1/4	31.8 31.8 31.8 31.8	4 4 4 4	1.798 1.798 1.798 1.798 1.798	45.7 45.7 45.7 45.7	79 79 79 79	7.5 7.5 7.5 7.5	300 300 300 300
-150300200 -15030050 -150300100 -150300A	200' 50' 100' reel	1 1/2 1 1/2 1 1/2 1 1/2 1 1/2	38.1 38.1 38.1 38.1	4 4 4 4	2.025 2.025 2.025 2.025 2.025	51.4 51.4 51.4 51.4	87 87 87 87	8.5 8.5 8.5 8.5	300 300 300 300
-200300200 -20030050 -200300100	200' 50' 100'	2 2 2	50.8 50.8 50.8	4 4 4	2.600 2.600 2.600	66.0 66.0 66.0	129 129 129	12.0 12.0 12.0	300 300 300

LENGTHS:

50 ft., 100 ft., 200 ft. and reels, all sizes except 2 in. is not available on reels. Reels have two 200 ft. lengths per reel.

COUPLINGS:

Coupling style 2, 3, 7, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details. WARNING! Combination nipple with bands reduces the working pressure of the assembly to less than the hose's max working pressure. Refer to NAHAD Assembly Guidelines for working pressure.

JIFFY[®] HOSE Air Hose - MSHA Series 7212

This oil resistant hose is excellent for use with air tools, to convey water, mild chemicals and various petroleum products. Light, flexible and couples in a jiffy - no clamps or special tools needed. Special braid angle for quick and secure push-on coupling retention. Available in various colors for color coding line. Flame resistant cover is branded with MSHA approval number. 4:1 Design factor

Tube: Cover: Reinforcement: Temp. Range: Branding:	Black Nitrile Black, blue, gray, green or red Neoprene One textile braid -40° F to +212° F PARKER/DAYCO 7212 JIFFY® HOSE PUSH-ON 1/4 in. ID 300 PSI MAX WP MSHA# MADE IN USA DE1
Brand Description:	(DATE CODE) Ink Brand - White or black letter color

Part No.	ID (in.)	ID (mm)	Reinf. Braid	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
7212-251*	1/4	6.4	1	0.500	12.7	9	3.0	300
7212-381*	3/8	9.5	1	0.625	15.9	12	3.0	300
7212-501*	1/2	12.7	1	0.750	19.1	15	5.0	300
7212-631*	5/8	15.9	1	0.906	23.0	20	6.0	300
7212-751*	3/4	19.1	1	1.031	26.2	26	7.0	300

LENGTHS: Random lengths on reels. Max. 600 ft., min. 400 ft., 5 pieces max. with 50 ft. minimum length.

COUPLINGS: Coupling style 8, 9, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Couplings Style Pages in the back of the catalog for coupling details.

*Note: Add BK (black), BL (blue), GY (gray), GN (green) or RD (red) to complete part number.

P	Acid & Chemical
N.	Air & Multi- Purpose
	Fire Suppression
	Food Handling
	Made To Order
	Material Handling
	Petroleum Dispenser
	Petroleum Transport
	Petroleum LP Gas
	Oil Field
	Special Applications
	Steam
	Water
	Welding
	Couplings & Equipment

TO: 7212 JIFFY WHOSE

Safety & Tech Data

CO: 7161 JIFFY FLE

Series 7161

A non-conductive spiral construction combined with oil-resistant materials make JIFFY FLEX an excellent choice in applications for air tools and petroleum products, as well as other applications requiring conveyance of mild chemicals or water where a light, flexible hose is needed. Push-On couplings insert easily and hold tightly. No clamps or special tools are needed. Available in various colors for easy identification in color-coded applications. Flame resistant cover is MSHA approved and branded with an MSHA approval number.

4:1 Design factor

Tube: Cover: Reinforcemen Temp. Range: Electrical Prop Branding Exam Brand Descrip	Neopu Multip -20° F : Non-c per in PARK HOSE NON-	te Textile to +180 conductiv ch at 100 ER/DAY 1/4 in. I	e vith a o volts CO 716 D 250 P CTIVE N	minimu DC. 1 JIFFY SI MAX IADE IN	m resistan FLEX™ 250 WP MSHA I USA DE1 s	0 PUSH-0 # ELECTI	ON RICALLY	
Part No.	ID (in.)	ID (mm)	Reinf. Spirals	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
-25250 -38250 -50250	1/4 3/8 1/2	6.35 9.53 12.70	2 2 2	0.520 0.650 0.781	13.21 16.38 19.81	10 14 17	3.0 3.0 5.0	250 250 250
LENGTHS:	500 ft. All reels are exact length (+0 ft./-0 ft.) 85% one piece, 15% two piece - 50 ft. minimum length.							

COUPLINGS: Coupling style 8, 9, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

NOTE:

Add BK (black), BL (blue), GY (gray), GN (green) or RD (red) to complete part number.

THORO-FLO[®] Multi-Purpose Hose Series 7101-RED – Series 7119- BLACK

A tough, versatile, multi-purpose hose designed to handle many jobs. The tube is compounded to provide maximum oil resistance. THORO-FLO® hose may be used to transmit air, water, oil and many chemicals in service up to 300 PSI. Exceeds RMA - Class A Oil resistance.

4:1 Design factor

Note: Do not use for hot dry air applications.

Tube:Black NitrileCover:Black or Red NeopreneReinforcement:One or multiple textile braidsTemp. Range:-20° F to +212° FBranding:PARKER/DAYCO SERIES 7101 THORO-FLO® 1/4 ID
(6.4 MM) XXX PSI MADE IN USABrand Description:Ink Brand - White letter color

Part No.	ID (in.)	ID (mm)	Reinf. Layers	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
-251	1/4	6.4	1	0.500	12.7	9	2.5	250
-252	1/4	6.4	2	0.594	15.1	15	3.3	300
-311	5/16	7.9	1	0.625	15.9	14	3.3	250
-312	5/16	7.9	2	0.656	16.7	17	3.5	300
-381	3/8	9.5	1	0.687	17.4	17	3.5	250
-382	3/8	9.5	2	0.719	18.3	19	4.0	300
-501	1/2	12.7	1	0.812	20.6	21	4.5	250
-502	1/2	12.7	2	0.875	22.2	26	4.8	300

LENGTHS: Random lengths on nominal 500 ft. reels, 725 ft. max., 400 ft. min., with 50 ft. minimum length, maximum 3 pieces.

COUPLINGS: Coupling style 1, 2, 3, 5, 8, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

	Acid & Chemical
	Air & Multi- Purpose
	Fire Suppression
	Food Handling
DAY	Made To Order
Ģ	Material Handling
ERIES	Petroleum Dispenser
7101	Petroleum Transport

Petroleum LP Gas

Oil Field

Special Applications

Steam

Water

Welding

Couplings & Equipment

Safety & Tech Data

DAY-FLO[®] Special Purpose Hose Series 7134 - RED – 7187 - BLACK (Non-Stock)

A tough, versatile, multi-purpose hose designed to handle many jobs. The tube is compounded to provide maximum oil resistance. DAY-FLO® hose may be used to transfer air, water, oil and many chemicals in service up to 300 PSI. Tube exceeds RMA - Class A Oil resistance. Braided reinforcement for maximum kink resistance.

4:1 Design factor

Note: Do not use for hot dry air applications.

Tube:
Cover:
Reinforcement:
Temp. Range:
Branding:
U

Black Nitrile Black or Red Neoprene One or multiple textile braids -20° F to +212° F PARKER/DAYCO SERIES 7134 DAY-FLO® 3/16 ID (4.8 MM) XXX PSI MAX WP MADE IN USA Ink Brand - White letter color

Brand Description:

Part No.	ID (in.)	ID (mm)	Reinf. Braids	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
-191	3/16	4.8	1	0.437	11.1	8	2.0	250
-251	1/4	6.4	1	0.500	12.7	9	2.5	250
-252	1/4	6.4	2	0.594	15.1	15	3.3	300
-311	5/16	7.9	1	0.625	15.9	14	3.0	250
-312	5/16	7.9	2	0.656	16.7	17	3.5	300
-381	3/8	9.5	1	0.687	17.4	17	3.5	250
-382	3/8	9.5	2	0.719	18.3	19	4.0	300
-501	1/2	12.7	1	0.812	20.6	21	4.5	250
-502	1/2	12.7	2	0.875	22.2	26	4.8	300
I ENGTHS.	3/16 in		mazimur	n 400 ft	minimum	3 nieces n		•

LENGTHS:

3/16 in. = 800 ft. mazimum, 400 ft. minimum, 3 pieces maximum, 50 ft. minimum length. 1/4 in. thru 1/2 in. = 725 ft. maximum, 400 ft. minimum, 3 pieces maximum, 50 ft. minimum length.

COUPLINGS:

Coupling style 1, 2, 3, 5, 8, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

GRIZZLY[™] 500 Multi-Purpose Hose Series 7107

The GRIZZLY[™] 500 Hose is a premium hose designed for multiple uses. With its modified NBR/PVC cover compound, abrasion and oil resistance has been significantly improved. GRIZZLY 500 Hose is the answer for numerous applications such as agricultural, foundry, factories, mines and many more applications where a heavy duty hose construction is required. It has the toughness of a braided hose in a flexible spiral construction. GRIZZLY 500 Hose meets MSHA Flame Resistance requirements and is non-conductive with a minimum one megohm resistance per inch at 1000 volts DC. 4:1 Design factor

Tube: Cover: Reinforcement: Temp. Range: Branding: Black Nitrile Yellow NBR/PVC blend Multiple textile spirals -40° F to +212° F Side 1 PARKER/DAYCO SERIES 7107 GRIZZLY[™] 1/4 ID (6.4 MM) 500 PSI MAX WP Side 2 ELECTRICALLY NON-CONDUCTIVE MSHA IC-123/20 MADE IN USA (DATE CODE) Ink Brand - Black letter color

Brand Description:

Part No.	ID (in.)	ID (mm)	Reinf. Spirals	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
7107-25500	1/4	6.4	4	0.625	15.9	15	2.0	500
7107-38500	3/8	9.5	4	0.750	19.1	19	2.5	500
7107-50500	1/2	12.7	4	0.875	22.2	26	3.0	500
7107-75500	3/4	19.1	4	1.187	30.1	39	4.5	500
7107-100500	1	25.4	4	1.500	38.1	56	6.0	500

LENGTHS: Exact length reels with +/- 50 ft., max. 2 pieces, 50 ft. min. length. Reel quantities 1/4 in. -750 ft., 3/8 in. -650 ft., 1/2 in. -500 ft., 3/4 in. -400 ft., 1 in. -300 ft..

COUPLINGS:

Coupling style 1, 2, 3, 5, 8, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

USA 7107 GRIZZL

WHIPPET® 200 Air Hose

Series 7137

Designed for light duty air lines and air hose whip ends. It is lightweight, flexible and oil resistant - ideal for industrial bench work. 4:1 Design factor

Tube: Cover: Reinforcement: Temp. Range: Branding: Brand Description: Black Nitrile Black Neoprene One textile braid -40° F to +180° F AIR SERVICE 200 PSI WP (DATE CODE) Ink Brand - White letter color

Part No.	ID (in.)	ID (mm)	Reinf. Braids	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
7137-191 7137-251 7137-311 7137-381	3/16 1/4 5/16 3/8	4.8 6.4 7.9 9.5	1 1 1	0.406 0.437 0.531 0.625	10.3 11.1 13.5 15.9	6 7 9 11	1.5 2.0 2.5 3.5	200 200 200 200

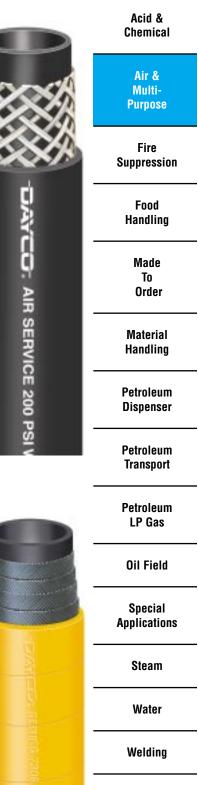
LENGTHS: 3/16 in. reels = 400 ft. - 800 ft. 5 pieces max, with 50 ft. min. length; 1/4 in. = 400 ft. - 725 ft. 5 pieces max, with 50 ft. min. length, 5/16 in. & 3/8 in. = 400 ft. - 725 ft. 3 pieces max, with 50 ft. min. length.

COUPLINGS: Coupling style 1, 3, 5, 8, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Couplings Style Pages in the back of the catalog for coupling details.

MAXIFLEX® Air Hose

Series 7308

MAXIFLEX[®] hose is light and flexible, yet sufficiently rugged to withstand the abuse and hard service found in mining and construction. It has excellent resistance to abrasion, gouging and weathering.


3:1 Design factor

Tubo	Pleak CDD
Tube:	Black SBR
Cover:	Yellow SBR
Reinforcement:	Multiple textile plies
Temp. Range:	-20° F to +200° F
Branding:	PARKER/DAYCO SERIES 7308 MAXIFLEX AIR HOSE
-	250 PSI WP MADE IN USA
Brand Description:	Emboss Brand

Part No.	ID (in.)	ID (mm)	Reinf. Plies	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
7308-1002	1	25.4	2	1.488	37.8	59	6.0	250
7308-1254	1 1/4	31.8	2	1.740	44.2	71	7.5	250
7308-1504	1 1/2	38.1	2	2.031	51.6	95	8.5	250
7308-2004	2	50.8	4	2.598	66.0	134	14.0	250
7308-2504	2 1/2	63.5	4	3.098	78.7	163	24.0	250
7308-3004	3	76.2	4	3.598	91.4	193	36.0	250

LENGTHS: 100 ft. lengths up to 200 ft. on quotation.

COUPLINGS: Coupling style 2, 3, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

Couplings & Equipment

> Safety & Tech Data

Air & Multi-Purpose

MAXIMAIRE[®] Heavy Duty **Non-Conductive Air Hose** Series 7201 - Green Cover

This hose is designed for air drills and pneumatic service in mines, guarries, general construction and industrial jobs where a heavy duty hose is needed. Built with an oil resistant tube and an oil and abrasive resistant cover. Hose is electrically non-conductive with a minimum resistance of 1 megohm per inch at 1000 volts, DC. 4:1 Design factor

Tube: Cover: **Reinforcement:** Temp. Range: Branding:

Brand Description:

White Neoprene Green Hypalon Multiple textile braids -20° F to +180°F PARKER/DAYCO USA 7201 MAXIMAIRE HEAVY DUTY AIR HOSE 2 1/2 ID XXX PSI MAX WP (DATE CODE) Embossed Brand

Part No.	ID (in.)	ID (mm)	Reinf. Braids	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
7201-502A	1/2	12.7	2	0.938	23.8	31	5.0	500
7201-502050*	1/2	12.7	2	0.938	23.8	31	5.0	500
7201-502100	1/2	12.7	2	0.938	23.8	31	5.0	500
7201-752A	3/4	19.1	2	1.250	31.8	48	6.5	500
7201-752050	3/4	19.1	2	1.250	31.8	48	6.5	500
7201-752100	3/4	19.1	2	1.250	31.8	48	6.5	500
7201-1002A	1	25.4	2	1.562	39.7	70	8.0	500
7201-1002050	1	25.4	2	1.562	39.7	70	8.0	500
7201-1002100	1	25.4	2	1.562	39.7	70	8.0	500
7201-1252K	1-1/4	31.8	2	1.813	46.1	81	9.0	350
7201-1503K	1-1/2	38.1	3	2.125	54.0	106	13.0	350
7201-2003K	2	50.8	3	2.656	67.5	153	15.0	350
7201-2503K*	2-1/2	63.5	3	3.250	82.6	210	22.0	300

AVAILABILITY: Stock; * non-stock LENGTHS:

Random lengths on reels. 1-1/4 in. through 2-1/2 in. 150 ft. reels, max. 5 pieces, 50 ft. min. length.

COUPLINGS:

Coupling style 2, 3, 8, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the

back of the catalog for coupling details.

DRAGON BREATH® Hot Air Hose Series 7281

WARNING! Cam and Groove Type Fittings are not recommended for use on this product when used in high temperature applications!

This hose is specifically designed to convey hot air at +300° F continuous and +350° F intermittent from the compressor or blower on dry material unloading systems. The EPDM tube and cover offer excellent resistance to heat as well as to weather and ozone. 4:1 Design factor

Tube: Cover: **Reinforcement:** Temp. Range: Branding:

Black EPDM Black EPDM Multiple textile braids with helix wire -30° F to +300°/350° F PARKER/DAYCO USA 7281 DRAGON BREATH® HOT AIR HOSE 1-1/2 ID XXX PSI MAX WP 001 **Embossed Brand**

Brand Description:

LENGTHS:

Part No.	ID (in.)	ID (mm)	Reinf. Plies	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
7281-1500	1 1/2	38.1	2	2.055	52.2	97	4.0	175
7281-2000	2	50.8	2	2.562	65.1	126	6.0	175
7281-3000	3	76.2	2	3.571	90.7	200	12.0	175
7281-4000	4	102.0	2	4.614	117.2	278	16.0	150

100 ft. lengths. COUPLINGS:

Coupling style 2, 3, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

MPW - 1000[®] Multi-Purpose Hose

Series 7204

This versatile multi-purpose hose is ideal for rugged service in many industrial and high pressure steam cleaning applications. In addition to air and water service, the oil resistant tube and cover will handle a variety of acids and chemicals. Suitable for saturated steam service to 150 PSI and temperatures to 368° F. Also suitable to convey hot tar, wax and glue at 300° F continuous, 350° F intermittent. 4:1 Design factor (10:1 for 150 PSI steam applications)

Tube: Cover: Reinforcement: Temp. Range: Branding: Black Nitrile Perforated Black Neoprene One wire braid -20° F to +300°/350°/368° F (steam) PARKER/DAYCO 7204 - MPW 1000 PSI MAX WP (DATE CODE) MADE IN USA Embossed Brand

Brand Description:

Part No.	ID (in.)	ID (mm)	Reinf. Layers	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP	Max. Steam WP
7204-381	3/8	9.5	2	0.781	19.8	28	5.0	1000	150
7204-501	1/2	12.7	2	0.906	23.0	34	7.0	1000	150
7204-751	3/4	19.1	2	1.187	30.1	52	9.5	1000	150
7204-1001	1	25.4	2	1.500	38.1	75	12.0	1000	150

LENGTHS: Random lengths on reels. Max. 600 ft., min. 400 ft. 5 pieces max. per reel with 50 ft. length.

COUPLINGS: Coupling style 2, 3, 8, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

THORO-BRAID® Air Hose - MSHA

Series 7251

This hose is designed for the most severe service in mines, quarries and heavy construction. Built with a tough neoprene tube to handle air, water, petroleum products and a number of acids and chemicals. The THORO-BRAID® hose cover offers excellent resistance to ozone, weather, abrasion and several acids and chemicals. The cover is also flame resistant with an embossed MSHA legend. 4:1 Design factor

Tube:	Black Neoprene
Cover:	Yellow Hypalon
Reinforcement:	One or multiple wire braids
Temp. Range:	-20° F to +200° F
Branding:	PARKER/DAYCO USA 7251 THORO-BRAID® AIR HOSE-
-	WIRE BRAID XXX PSI MAX WP-DE4 FIRE RESISTANT-
	MSHA IC-123/3-(DATE CODE) -001
Brand Description:	Embossed Brand

Part No.	ID (in.)	ID (mm)	Reinf. Layers	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
7251-1501K	1 1/2	38.1	1	2.062	52.4	122	20.0	600
7251-2002K	2	50.8	2	2.656	67.5	189	25.0	600
7251-2502K	2 1/2	63.5	2	3.156	80.2	230	32.0	500
7251-3002K	3	76.2	2	3.656	92.9	273	36.5	500
7251-4002K*	4	101.6	2	4.656	118.3	363	48.0	400

LENGTHS: Random lengths – 150 ft. +0 ft./-20 ft., 3 pieces maximum., 50 ft. min. length. *7251-4002K is tire wrapped and packaged in either 6/50 ft. or 3/100 ft.

COUPLINGS: Coupling Style 2, 3, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

Acid &

Chemical

Air &

Multi-

Purpose

WHELE 7204-MPW 1000 PSI M

DAYCO- USA 7268 STINGER IITH 3/4"

STINGER[™] II Mine Air & Water Hose

Series 7268

Stinger II hose is a very durable hose manufactured to handle the severe service requirements of underground mine spray service. The bright vellow MSHA cover is flame, oil and abrasion resistant. This hose is also an excellent choice for high pressure air and washdown service.

4:1 Design factor (2 in. - 3.5:1)

Tube: Cover: **Reinforcement:** Temp. Range: Branding:

Black Neoprene Yellow NBR/PVC Wire braid -20° F to +180° F PARKER/DAYCO USA 7268 STINGER II™ 3/4 ID 1000 PSI MAX WP MSHA IC-123/17 DE2 (DATE CODE) Ink Brand - Black letter color

Brand Description:

Part No.	ID (in.)	ID (mm)	Reinf. Braids	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
7268-751 7268-1001 7268-1251 7268-1501 7268-2001	3/4 1 1 1/4 1 1/2 2	19.1 25.4 31.8 38.1 50.8	1 1 1 1	1.045 1.339 1.631 1.890 2.440	26.5 34.0 41.4 48.0 62.0	36 53 66 86 141	6.0 8.0 12.0 14.0 18.0	1000 1000 1000 1000 1000

LENGTHS: COUPLINGS:

Random lengths on reels (3/4 in. & 1 in.) and specified 50 ft. & 100 ft. Coupling style 8, or for other recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling detials.

YELLOW BIRD[®] Air & Water Hose – MSHA Series 7284

YELLOW BIRD[®] hose is designed for high pressure water service in underground mines. The SBR tube, wire braided construction, and nitrile/PVC cover also makes it an excellent high pressure air or general purpose hose. The flame resistant yellow cover is branded with the MSHA legend.

4:1 Design factor

Tube: Cover: Reinforceme Temp. Range Branding:		Black SBR Yellow NBR/PVC, PIN-PRICKED One or multiple wire braids -20° F to +180° F PARKER/DAYCO USA 7284 YELLOW BIRD® HOSE							
Brand Descr	iption:	(DATE CODE) DE2 XXXX PSI MAX WP MSHA IC-123/17 - FLAME RESISTANT Ink Brand - Black letter color							
Part No	ID (in)	ID (mm)	Reinf. Braids	OD (in)	OD (mm)	Approx. Wt. Per 100 Ft	Min. Bend Radius	Max. Rec. WP	

Part No.	ID	ID	Reinf.	OD	OD	Wt. Per	Bend	Rec.
	(in.)	(mm)	Braids	(in.)	(mm)	100 Ft.	Radius	WP
7284-381 7284-501 7284-751 7284-1001 7284-1252	3/8 1/2 3/4 1 1 1/4	9.5 12.7 19.1 25.4 31.8	1 1 1 2	0.688 0.969 1.219 1.469 1.719	17.5 24.6 31.0 37.3 43.7	25 37 56 90	6.0 7.0 9.5 12.0 15.5	1500 1000 1000 1000 1000

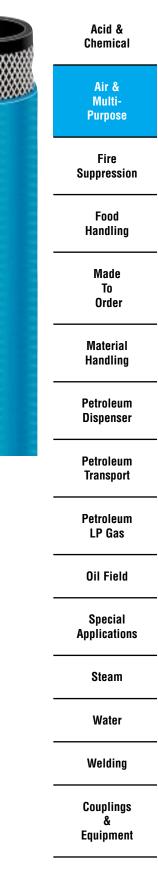
LENGTHS:

Random lengths on reels. 3/8 in. is 400 ft., 3 pc. max., 10 ft. min. length - 1/2 in. is 425 ft., 5 pc. max., 50 ft. min. - 3/4 in. & 1 in. is 500 ft., 5 pc. max., 50 ft. min.

COUPLINGS: Coupling style 8, or for other recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling detials.

THERM-O-BLUE®

ORS PVC Air Hose


THERM-O-BLUE[®] ORS Hoses are made for air, water and moderate chemical applications. The tube is formulated with special additives to significantly increase the amount of oil resistance over normal PVC hoses. This special tube is protected by a non-marking cover. Combined, they provide a lightweight and highly flexible hose which is ideal for many industrial applications. 4:1 Design factor

Tube:	Orange Prime PVC with ORS additives
Cover:	Blue Prime PVC
Reinforcement:	Multiple Textile Spirals
Temp. Range:	-20° F to +150° F
Branding:	SWAN THERM-O-BLUE ORS 200 PSI WP
-	MADE IN USA 3/4 in19.1 MM
Brand Description:	Ink Brand - White letters (1 in. embossed only)

Part No.	ID (in.)	ID (mm)	Reinf. Spirals	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
39390	1/4	6.4	2	0.500	12.7	8.4	3.0	300
39391*	1/4	6.4	2	0.500	12.7	8.4	3.0	300
39392**	1/4	6.4	2	0.500	12.7	8.4	3.0	300
39393	3/8	9.5	2	0.641	16.3	11.9	4.0	300
39394*	3/8	9.5	2	0.641	16.3	11.9	4.0	300
39395**	3/8	9.5	2	0.641	16.3	11.9	4.0	300
39396	1/2	12.7	2	0.781	19.8	15.9	5.0	300
39397	3/4	19.1	2	1.031	26.2	21.6	8.0	200
39398	1	25.4	2	1.281	32.5	27.9	11.0	200

LENGTHS: *5-50 ft. lengths per carton **3-100 ft. lengths per carton. Exact 500 ft. reels, 90% 1 piece, 50 ft. minimum length, 1 in. = 250 ft. reel.

COUPLINGS: Coupling style 1, 2, 3, 5, 7, 8, or for other coupling recommenda tions refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

Swan Therm-o-Blue ors 300 PSI WP

Safety & Tech Data

Air & Multi-Purpose

THERM-O-RED ORS 300 PSI WP

THERM-O-RED[®] ORS PVC Air Hose

THERM-O-RED[®] ORS hoses are made for air, water and moderate chemical applications. The tube is formulated with special additives to significantly increase the amount of oil resistance over normal PVC hoses. This special tube is protected by a non-marking cover. Combined, they provide a lightweight and highly flexible hose which is ideal for many industrial applications. 4:1 Design factor

Tube:Orange Prime PVC with ORS additivesCover:Red Prime PVCReinforcement:Multiple Textile SpiralsTemp. Range:-20° F to +150° FBranding:---SWAN THERM-O-RED ORS --- 200 PSI WP ---
MADE IN USA --- 3/4 in. - 19.1 MM ---Brand Description:Ink Brand - White letters (1 in. embossed only)

Part No.	ID (in.)	ID (mm)	Reinf. Spirals	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
39374 39375	1/4 3/8	6.4 9.5	2 2	0.500 0.641	12.7 16.3	8.4 12.2	3.0 4.0	300 300
39376	1/2	12.7	2	0.781	19.8	16.2	5.0	300
39377	3/4	19.1	2	1.031	26.2	20.8	8.0	200
39380	1	25.4	2	1.281	32.5	26.7	11.0	200

LENGTHS:

THS: Exact length 500 ft. reels, 90% 1 pc., 50 ft. minimum length. 1 in. = 250 ft. reel.

COUPLINGS: Coupling style 1, 2, 3, 5, 7, 8, or for other coupling recommenda tions refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

HYDRO-AIRE[™] PVC Hose

LENGTHS:

COUPLINGS:

Hydro-Aire[™] hose is an extremely flexible and lightweight vinyl hose for air and water applications. Extruded PVC Tube. Black or Red 4:1 Design factor

Tube: Cover: Reinforcement: Temp. Range: Branding:	Black PVC Red or Black PVC Multiple Textile Spirals +20° F to +140° F SWAN HYDRO-AIRE [™] 150 PSI WPMADE IN USA 1 in. (25.4 MM)
Brand Description:	Ink Brand - White letter color

Part No.	Color	ID (in.)	ID (mm)	Reinf. Spirals	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
39362	Red	1/4	6.4	2	0.500	12.7	10	2.5	250
39382	Black	1/4	6.4	2	0.500	12.7	10	2.5	250
39363	Red	5/16	7.9	2	0.593	15.9	12	3.0	250
39383	Black	5/16	7.9	2	0.593	15.9	12	3.0	250
39364	Red	3/8	9.5	2	0.641	16.3	14	3.5	250
39384	Black	3/8	9.5	2	0.641	16.3	14	3.5	250
39365	Red	1/2	12.7	2	0.781	19.8	18	5.0	250
39385	Black	1/2	12.7	2	0.781	19.8	18	5.0	250
39366	Red	5/8	15.9	2	0.921	23.0	22	6.5	250
39386	Black	5/8	15.9	2	0.921	23.0	22	6.5	250
39367	Red	3/4	19.1	2	1.031	27.0	27	7.5	200
39387	Black	3/4	19.1	2	1.031	27.0	27	7.5	200
39368	Red	1	25.4	2	1.281	33.7	36	10.0	150
39388	Black	1	25.4	2	1.281	33.7	36	10.0	150

in the back of the catalog for coupling details.

Exact 500 ft. reels, 90% 1 piece, 10% 2 pieces - 50 ft. min. length.

Available in cut lengths, coupled assemblies and various colors. Coupling style 1, 2, 3, 5, 7, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages

	Air & Multi- Purpose
	Fire Suppression
	Food Handling
	Made To Order
	Material Handling
L	Petroleum Dispenser
1	Petroleum Transport
	Petroleum LP Gas
	Oil Field
	Special Applications
	Steam

SUUSIN. HYDRO-AIRE **-150 PS

- - -

- -

Acid &

Chemical

Water

Welding

Couplings & Equipment

Safety & Tech Data

Air & Multi-Purpose

Fire Suppression

	page	series
Fire Engine Corrugated Suction Hose	. 36	. 7209
Fire Engine Suction Hose	. 36	. 7210
Booster 800 High Pressure Hose	. 37	. 7270
YELLOW BIRD [®] PVC Fire Hose – MSHA		

Fire Engine Corrugated Suction Hose Series 7209

Water suction hose for use on fire engines. Rugged, heavy duty construction for long service life. Corrugated cover reduces bend resistance providing maximum flexibility.

Tube: Cover: Reinforcement: Temp. Range: Branding: Black SBR Black SBR Multiple textile plies with helix wire -30° F to +180° F None

Part No.	ID (in.)	ID (mm)	Reinf. Plies	Max. Cuff OD (in.)	Max. Cuff OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Test Pressure
7209-4502010	4 1/2	114.3	2	5.354	136	272	25.0	200
7209-5002010	5	127.0	2	5.866	149	300	30.0	200
7209-6002010	6	152.4	2	6.850	174	380	40.0	200

LENGTHS: 10 ft. OAL including soft cuff.

COUPLINGS: Not available from Parker/Dayco. For coupling recommendations refer to NAHAD Assembly Guidelines.

Fire Engine Suction Hose Series 7210

Water suction hose for use on fire engines. Rugged, heavy duty construction for long service life, yet flexible for easy handling.

Tube:	Black SBR
Cover:	Black SBR
Reinforcement:	Multiple textile plies with helix wire
Temp. Range:	-30° F to +180° F
Branding:	None

Part No.	ID (in.)	ID (mm)	Reinf. Layers	Max, Cuff OD (in.)	Max. Cuff OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Test Pressure
7210-4502010	4 1/2	114.3	2	5.354	136	393	25.0	200
7210-5002010	5	127.0	2	5.866	149	492	30.0	200
7210-6002010	6	152.4	2	6.850	174	548	40.0	200

LENGTHS: 10 ft. OAL including soft cuff.

COUPLINGS: Not available from Parker/Dayco. For coupling recommendations refer to NAHAD Assembly Guidelines.

Booster 800 High Pressure Hose

Series 7270

This is a heavy duty hose for high pressure chemical and water booster service on fire engines. Acceptable for short term use with Halon 1211. Tube and cover compounds are abrasion and weather resistant. Tough yet flexible, for resistance to flexing and surge loads. Meets NFPA 1961 requirements under current RMA specifications. Meets or exceeds UL92 requirements for 800 PSI Booster Hose. 4:1 Design factor

Tube:Black NeopreneCover:Red NeopreneReinforcements:Multiple textile braidsTemp. Range:-40° F to +180° FBranding:PARKER/DAYCO USA 7270 HP BOOSTER 800 HOSE -
800 PSI MAX WP-3200 PSI BURST -DE2 (DATE CODE)Brand Description:Ink Brand - Black letter color

Part No.	ID (in.)	ID (mm)	Reinf. Braids	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Bend	Max. Rec. WP
7270-752	3/4		2	1.173	29.8	39	7.0	800
7270-1002	1		2	1.500	38.1	59	8.0	800

LENGTHS: Random lengths on reels. **COUPLINGS:** Coupling style 8, or for oth

Coupling style 8, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

	Acid & Chemical
ROX	Air & Multi- Purpose
	Fire Suppression
	Food Handling
	Made To Order
Q: US/	Material Handling
A 7270	Petroleum Dispenser
HP BO	Petroleum Transport
	Petroleum LP Gas

Oil Field

Special Applications

Steam

Water

Welding

Couplings & Equipment

Safety & Tech Data

Series 7540 Service Test Pressure 150 PSI

This is a lightweight hose designed for fire protection service in underground mines. Brightly colored for high visibility. Continuously branded with MSHA legend. Not recommended where temperatures exceed 125° F. Rolls up flat for easy storage. 3:1 Design factor

Tube: Cover: Reinforcement: Temp. Range: Branding: Brand Description: Black PVC Yellow PVC 2 spiral plies and one longitudinal ply -10° F to +125° F FLAME RESISTANT USMSHA 2G-60/1 Ink Brand - Black letter color

Part No.	ID (in.)	ID (mm)	Reinf. Plies	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Max. Rec. WP
7540-1501	1 1/2		3	1.563	39.7	28	150
7540-1501300	1 1/2		3	1.563	39.7	28	150
7540-2001	2		3	2.188	55.6	36	150

LENGTHS: 250 ft. & 300 ft. bales.

COUPLINGS: Coupling style 7, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

FLAME RESISTANT USMSHA 2G-60/1

Food Handling

	page	series
Food Product Discharge Hose	. 40	. 7304
Food Suction & Discharge Hose Butyl Rubber Tube	. 40	. 7305
Food Suction & Discharge Hose Nitrile Rubber Tube	. 41	. 7310
ECW [™] Economy White Washdown Hose	. 42	. 7079
HDW [™] Creamery Washdown Hose		
WILDCATTER® Washdown Hose	. 43	. 7360
DYNAFLEX® PVC Clear Suction Hose – FDA-Medium Duty	. 44	. 7582
DYNAFLEX® PVC Transparent Suction/Discharge Hose.	. 44	. 7570
PWD High Pressure Washdown Hose		
BLUE RIBBON® Pressure Washer Hose		

Food Products Discharge Hose

Series 7304

This hose is designed for discharging food products. It is a versatile construction that can be used for many food and beverage applications and CIP (clean in place) conditions. It meets the requirements of FDA, USDA and 3-A regulations. The white nitrile rubber tube has an ultra-smooth finish. The gray EPDM rubber cover provides endurance and resistance to discoloration. 4:1 Design factor

Tube: Cover: Reinforcement: Temp. Range: Branding Example:

White nitrile rubber Gray EPDM rubber Textile Plies -40° F to +180° F PARKER/DAYCO SERIES 7304 FOOD PRODUCTS DISCHARGE NITRILE TUBE 250 PSI MAX WP FDA USDA 3-A (international food symbol) MADE IN USA

Branding Description: Ink transfer—Blue letters

Part No.	ID (in.)	ID (mm)	Reinf. Plies	OD (in.)	OD (mm)	Approx. Wt. Per. 100 Ft.	Max. Rec. WP
7304-1500	1-1/2	38.0	4	2.125	54.0	82	250
7304-2000	2	50.8	4	2.625	66.7	108	250
7304-2500	2-1/2	63.5	4	3.125	79.4	132	250
7304-3000	3	76.2	4	3.625	92.1	158	250
7304-4000	4	101.6	4	4.625	117.5	203	250

LENGTHS: 100 ft. coils COUPLINGS: Coupling st

Coupling style 10, 11, 14, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

Food Suction & Discharge Hose Butyl Rubber Tube Series 7305

This is a versatile food suction and discharge hose with a butyl tube for superior temperature capability in food processing and CIP (clean in place) environments. The pure white butyl rubber tube will not impart taste or odor, and has an ultra-smooth finish. Recommended for many dry food and beverage products. Steel helix wire provides endurance and resistance to discoloration. This hose meets the requirements of FDA, USDA and 3-A regulations. 4:1 Design factor

Tube: Cover: Reinforcement: Temp. Range: Branding Example: White butyl rubber Gray EPDM rubber Textile Plies -40° F to + 225° F continuous (+250° F intermittent) PARKER/DAYCO SERIES 7305 FOOD PRODUCTS SUCTION & DISCHARGE BUTYL TUBE 150 PSI MAX WP FDA USDA 3-A (international food symbol) MADE IN USA

Branding Description: Ink transfer—Yellow letters

Part No.	ID (in.)	ID (mm)	Reinf. Plies	OD (in.)	OD (mm)	Approx. Wt. Per. 100 Ft.	Min. Bend Radius	Max. Rec. WP
7305-2000	2	50.8	2	2.656	66.7	132	7.0	150
7305-2500	2-1/2	63.5	2	3.219	79.4	184	8.0	150
7305-3000	3	76.2	2	3.750	92.1	245	9.0	150
7305-4000	4	101.6	2	4.781	117.5	350	12.0	150

LENGTHS: 100 ft. coils

COUPLINGS: Coupling style 10, 11, 14, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

Food Suction & Discharge Hose Nitrile Rubber Tube

Series 7310

This hose is flexible and lightweight for easy handling. The ultra-smooth white nitrile rubber tube is suitable for many food and beverage products. The steel helix wire provides full suction capability and allows tight bends in flexible connector service. The gray EPDM rubber cover provides endurance and resistance to discoloration. This hose meets the requirements of FDA, USDA, and 3-A regulations. 4:1 Design factor

Tube: Cover: Reinforcement: Temp. Range: Branding Example:	White nitrile rubber Gray EPDM rubber Textile Plies -40° F to +180° F PARKER/DAYCO SERIES 7310 FOOD PRODUCTS SUCTION & DISCHARGE NITRILE TUBE 150 PSI MAX
	WP FDA USDA 3-A MADE IN USA
Branding Description	Ink transfer—Blue letters
Dianung Description.	

Part No.	ID (in.)	ID (mm)	Reinf. Plies	OD (in.)	OD (mm)	Approx. Wt. Per. 100 Ft.	Min. Bend Radius	Max. Rec. WP
7310-1500	1-1/2	38.0	2	2.063	52.4	92	6.0	150
7310-2000	2	50.8	2	2.563	65.1	128	7.0	150
7310-2500	2-1/2	63.5	2	3.063	77.8	159	8.0	150
7310-3000	3	76.2	2	3.625	92.2	206	9.0	150

LENGTHS: 100 ft. coils COUPLINGS: Coupling sty

Coupling style 10, 11, 14, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

	Acid & Chemical								
	Air & Multi- Purpose								
2	Fire Suppression								
	Food Handling								
	Made To Order								
	Material Handling								
	Petroleum Dispenser								
	Petroleum Transport								
	Petroleum LP Gas								
	Oil Field								
	Special Applications								
	Steam								
	Water								
	Welding								

Couplings & Equipment

Safety & Tech Data

ECW[™] Economy White Washdown Hose

Series 7079

ECW[™] hose is primarily designed for use in food plants, breweries and any place a flexible, lightweight washdown hose is needed. 4:1 Design factor

Tube: Cover: Reinforcement: Temp. Range: Branding:

Black EPDM White EPDM Multiple textile spirals -40° F to +212° F PARKER/DAYCO SERIES 7079 ECW ECONOMY WASHDOWN 3/4 ID (19.1 MM) 300 PSI MAX WP MADE IN USA Ink Brand - Black letter color

Brand Description:

Part No.	ID (in.)	ID (mm)	Reinf. Spirals	OD (in.)	OD (mm)	Approx. Wt. Per. 100 Ft.	Bend	Max. Rec. WP
-75304	3/4	19.1	4	1.156	29.4	37	5.0	300
-7530450	3/4	19.1	4	1.156	29.4	37	5.0	300

LENGTHS: 350 ft. reels (+50 ft./-0 ft.) 90% 1 pc., 10% 2 pc. - min. length 50 ft. 50 ft. cut lengths = 48 each, coiled & tied in pallet boxes.

COUPLINGS: Coupling style 2, 3, 8, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

-DAYCO: SERIES 7080 HDW CREAMERY W

DAYCO: SERIES 7079 ECW ECONOMY W/

HDW[™] Creamery Washdown Hose Series 7080

The HDW-Heavy Duty Washdown hose is designed for general washdown and equipment cleaning requirements in food processing, dairy product processing, and industrial plants. The high quality EPDM tube compound allows this hose to be used for 212° F hot water at 300 PSI or saturated steam to +298° F / +148° C at 50 PSI maximum.

4:1 Design factor

Tube: Cover: Reinforcement: Temp. Range: Branding Example:	Black high grade EPDM White high grade EPDM Multiple textile spirals -40° F to +212° F @ 300 PSI and to +298° F @ 50 PSI PARKER/DAYCO SERIES 7080 HDW CREAMERY WASHDOWN 3/4 in. ID (19.1 MM) 300 PSI MAX WP
Brand Description:	MADE IN USA Ink Brand - Black letter color

ID (in.)	ID (mm)	Reinf. Spirals	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
3/4 3/4	19.1 19.1	4 4			48 48	6.5 6.5	300 300
-50 ft. 50 ft.	min. ler cut leng	ngth. ths = 24	each, c	oiled and	d tied in pa		
	(in.) 3/4 3/4 350 ft -50 ft. 50 ft.	(in.) (mm) 3/4 19.1 3/4 19.1 350 ft. reels (- -50 ft. min. ler 50 ft. cut leng	(in.) (mm) Spirals 3/4 19.1 4 3/4 19.1 4 350 ft. reels (+50 ft./-0 -50 ft. min. length. 50 ft. cut lengths = 24 -50 ft.	(in.) (mm) Spirals (in.) 3/4 19.1 4 1.250 3/4 19.1 4 1.250 350 ft. reels (+50 ft./-0 ft.), 90% -50 ft. min. length. 50 ft. cut lengths = 24 each, column	(in.) (mm) Spirals (in.) (mm) 3/4 19.1 4 1.250 31.8 3/4 19.1 4 1.250 31.8 350 ft. reels (+50 ft./-0 ft.), 90% 1 pc., -50 ft. min. length. 50 ft. cut lengths = 24 each, coiled and	ID (in.) ID (mm) Reinf. Spirals OD (in.) OD (mm) Wt. Per 100 Ft. 3/4 19.1 4 1.250 31.8 48 3/4 19.1 4 1.250 31.8 48 350 ft. reels (+50 ft./-0 ft.), 90% 1 pc., 10% 2 pc. -50 ft. min. length. 50 ft. cut lengths = 24 each, coiled and tied in particular	ID (in.) ID (mm) Reinf. Spirals OD (in.) OD (mm) Wt. Per 100 Ft. Bend Radius 3/4 19.1 4 1.250 31.8 48 6.5 3/4 19.1 4 1.250 31.8 48 6.5 350 ft. reels (+50 ft./-0 ft.), 90% 1 pc., 10% 2 pc. 350 ft. reels (+50 ft./-0 ft.), 90% 1 pc., 10% 2 pc. 100 Ft. 100 Ft.

S: Coupling style 2, 3, 8, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

WILDCATTER® Washdown Hose

Series 7360

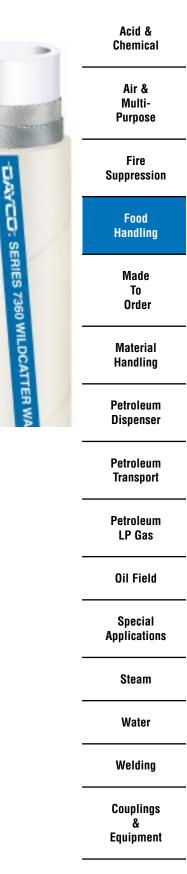
WILDCATTER® hose is a general purpose washdown hose, designed with a rugged vet flexible construction for ease of handling in many tough applications including breweries, dairies, food plants, paper mills and oil rigs. Available with and without built-in nozzle.

4:1 Design factor

Tube:	White SBR
Cover:	White SBR
Reinforcement:	Multiple textile plies
Temp. Range:	-20° F to +212° F
Branding:	PARKER/DAYCO [®] SERIES 7360 WILDCATTER WASH
-	DOWN HOSE MADE IN USA 001 (7360 WITH NOZZLE
	MADE IN ITALY)
Brand Description:	Tape Brand - Blue Stripe with White letters.

Brand Description:

Part No.	ID (in.)	ID (mm)	Reinf. Plies	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
7360-50*	1/2	12.70	2	1.008	25.60	37	4.0	150
7360-75*	3/4	19.05	2	1.250	31.75	49	6.0	150
7360-100*	1	25.40	2	1.598	40.59	75	8.0	150
7360-125*	1 1/4	31.75	2	1.875	47.63	93	12.0	150
7360-150*	1 1/2	38.10	2	2.125	53.98	107	18.0	150
7360-200*	2	50.80	4	2.748	69.80	172	24.0	150


LENGTHS:

50 ft.

*add 150 to part number above for length without nozzle *add F050 to part number above for length with nozzle

COUPLINGS: Coupling style 2, 3, 7, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details. WARNING! Combination nipple with bands reduces the working pressure of the assembly to less than the hose's

max working pressure. Refer to NAHAD Assembly Guidelines for working pressures.

Safety & **Tech Data**

DYNAFLEX[®] PVC Clear Suction Hose FDA - Medium Duty

Series 7582

Recommended for conveying milk and other food products in full suction applications. Smooth bore tube will not impart taste or odor into product being conveyed. Meets FDA: CFR Title 21, parts 170 - 199. 3:1 Design factor

Tube: Cover: Reinforcement: Temp. Range: Branding: Clear PVC Clear PVC Rigid White PVC spiral helix -5° F to +140° F None

Part No.	ID (in.)	ID (mm)	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
7582-1500	1 1/2	38.1	1.850	47.0	47	7.5	110
7582-2000	2	50.8	2.350	59.7	67	9.0	90
7582-2500	2 1/2	63.5	2.900	73.7	99	11.0	80
7582-3000	3	76.2	3.450	87.6	116	13.0	65
7582-4000	4	101.6	4.550	115.6	180	19.0	50

LENGTHS: 100 ft. coils

COUPLINGS: Coupling style 7, or for other coupling recommendations refer to NAHAD Assembly Guidelines.

DYNAFLEX[®] PVC Transparent Suction/Discharge Hose – FDA Series 7570

Designed to handle a variety of applications where a lightweight, flexible suction/discharge hose is required. A steel helix wire combined with a thick wall construction gives the hose excellent kink, abrasion and crush resistance. The transparency allows for easy inspection of product being conveyed. Flexible to -10° F. The steel helix wire provides static conductivity. Meets CFR, Title 21 parts 170-199.

3:1 Design factor

Color: Construction: Temp. Range: Branding: Transparent PVC Multi-component PVC extrusion with helix wire -10° F to +120° F None

Part No.	ID (in.)	ID (mm)	OD (in.)	OD (mm)	Approx. Wt Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
7570-750	3/4	19.1	1.020	25.9	21	3.0	100
7570-1000	1	25.4	1.340	34.0	34	3.5	85
7570-1250	1 1/4	31.8	1.630	41.4	42	6.3	75
7570-1500	1 1/2	38.1	1.940	49.3	52	7.5	75
7570-2000	2	50.8	2.500	63.5	84	9.8	75
7570-2500	2 1/2	63.5	3.200	81.3	121	12.0	55
7570-3000	3	76.2	3.630	92.2	148	15.0	55
7570-4000	4	101.6	4.720	119.9	235	19.7	35
7570-6000	6	152.4	6.950	176.5	429	23.0	30

LENGTHS: 100 ft. coils COUPLINGS: Coupling sty

GS: Coupling style 7, or for other coupling recommendations refer to NAHAD Assembly Guidelines.

PWD High Pressure Washdown Hose Series 7143

A premium, flexible and lightweight hose for washdown service in applications such as meat and poultry plants. The specially blended cover provides excellent resistance to animal fats and oils, as well as improved abrasion resistance over similar hose products. Design factor: 1 Braid = 4:1 2 Braid = 3.5:1

WARNING: Not to be used for steam service!

Tube:	Black synthetic rubber
Cover:	Gray (GY) or Yellow (YL) synthetic rubber
Reinforcement:	1 or 2 textile braids
Temp. Range:	-40° F to +250° F
Branding:	PARKER/DAYCO SERIES 7143 PWD 3/8 ID (9.5 MM)
-	XXXX PSI MAX WP MADE IN USA (DATE CODE)
Brand Description:	Ink Brand - Black letter color

Part No.	ID (in.)	ID (mm)	Reinf. Braids	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
7143-251YL	1/4	6.4	1	0.570	14.5	13	3.0	1000
7143-251GY	1/4	6.4	1	0.570	14.5	13	3.0	1000
7143-381GY	3/8	9.5	1	0.625	15.9	13	4.0	1000
7143-381YL	3/8	9.5	1	0.625	15.9	13	4.0	1000
7143-382GY	3/8	9.5	2	0.734	18.6	19	4.0	1500
7143-382YL	3/8	9.5	2	0.734	18.6	19	4.0	1500

LENGTHS: Random lengths on reels. COUPLINGS: Coupling style 2, 3, 8, or for

Coupling style 2, 3, 8, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

BLUE RIBBON[®] Pressure Washer Hose Series 7247

Developed specifically for the food process industry, this blue, non-marking, oil and fat-resistant hose provides 1500 PSI working pressure for efficient in-plant washdown service. For use with Dayco over-the-cover (non-skive) crimp couplings. 4:1 Design factor

WARNING! Not recommended for Steam Service.

Tube:	Black Neoprene
Cover:	Perforated blue Neoprene
Reinforcement:	One wire braid
Temp. Range:	-40° F to +250° F/275° F
Branding:	PARKER/DAYCO USA 7247 BLUE RIBBON® PRESSURE
	WASHER HOSE 1/4 ID 1500 MAX WP DE2 (DATE CODE)
	NOT FOR STEAM SERVICE
Brand Description:	Ink Brand - White letter color

Part No.	ID (in.)	ID (mm)	Reinf. Braid	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
7247-251BL	1/4	6.4	1	0.575	14.6	18	1.7	1500
7247-381BL	3/8	9.5	1	0.700	17.8	24	2.2	1500
7247-501BL	1/2	12.7	1	0.825	21.0	30	3.2	1500

LENGTHS: COUPLINGS:

Random lengths on reels and specified cut lengths.

Coupling style 10, 11, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

	Chemical
	Air & Multi- Purpose
	Fire Suppression
l	Food Handling
l	Made To Order
l	Material Handling
l	Petroleum Dispenser
	Petroleum Transport
	Petroleum

VCD: SERIES 7143 PWD 3/8 I.D. (9.5MM

1000

Acid &

LP Gas

Oil Field

Special Applications Steam Water Welding Couplings & Equipment Safety & Tech Data Chemical Charts

AYCO: USA 7247 BLUE RIBBON

Food Handling

Made-to-order hose

Customer satisfaction is the number 1 priority at Parker. Obtaining the right product at the right time, at the right price is the secret to success. At Parker, we provide a trained customer service team to answer inquiries on product availability, as well as a quick response to the use of our products for various applications.

In order to provide the fastest possible service and delivery, it is recommended that existing products are always considered first. But when existing products won't do, then a made-to-order item may be considered.

Parker invites your requirements for special hoses not included in the standard Parker product line. Remember, made-to-order items will be subject to a set of guidelines to determine whether Parker is able to satisfy your needs. Made to order products will fall into two categories:

1. A modification of a standard Parker item, which can include special options for:

Coupled Assemblies	5
Lengths	
Packaging	
Branding	
Colors	
ID	
OD	
Working Pressure	

2. New product design — New designs for new applications, or to improve performance in existing applications.

For both items above (#1 and #2), please:

- Complete the Industrial Hose product request form on the next two pages (make copies or request pads of form DF-1468 from Customer Service.)
- Always provide as much detail as possible
- Give the form to your local Sales representative
- Parker will give your request immediate attention

-2.						Cı	ustomer Refere	ence. # _			
				CT REQUES		RM	с	late			
						except for t			noted in se	ection(s	s)
(circle appropr 1	iate se 2	ection num 3		•	is where 7	e information is id 8 9	entical to existing 10 11	g hose) 12			
salesman						err. #	-				
customer nan	ne				e	end user name					
address					é	address					
city,state,zip					c	city,state,zip					
phone#					k	ohone#					
fax #					f	ax #					
contact name	;				c	contact name					
Section 1					I			SIZE			
i.d.			lerance	o.d.	C	o.d. tolerance	wt./100'		bend ra	dius	
	ŀ	+	-			+ -	_				
PACKAGING	reel		cut length_	bale	ki	ng pack	other	feet/pk	g	tolera	ance
additional det	 ails									+	
	and										
Section 2											
minimum:				maximum:			normal:				
internal		external		internal	е	xternal	_ internal		external_		
Section 3				AF	PLIC	ATION					
how will the h	nose	be used?					h	iours/we	ek?		
environmenta	al con	ditions				adverse conditi	ions?				
customer exr	pectat	ion? (aive	e as much c	letail as possibl	e)						
		(3.1		P	-,						
MOTION: (fle	exing,	amount,	frequency)								
Section 4				N	IATE	RIAL					
PRODUCT T	O BE	CONVE	YED (examp	le: chemical, air	with oil	mist, dry cement,	hydraulic fluid)	concen	tration		
give as much	ı deta	il as poss	sible about r	naterial to be c	onveye	d:		-			
Section 5				Р	RESS	SURE					
maximum wo	rking	minimum	n burst		-	teristics: (static,	dynamic, interm	ittent)	flow (gpn	n or so	.fm)
				1	I						

Customer Reference. # _____

INDUSTRIAL HOSE PRODUCT REQUEST FORM

date_____

Section 6							E	ND	S							
type to be u	used	banded_										Park	er provid	ded ass	embl	y?
		external	crimp_									ye		no_		
		internally	v expar	nded									all length sembly			
Section 7												1				
date require	əd an	nual units	units (on first	order	delive	ery sch	edu	le?				\$ poten x annual ur			
Section 8																
compound / material	t	hickness)(tance B)(C resistan			non co	conductive nductive_ uirements			other			
Section 9																
textile wi	ire	brai	d s	spiral	hel	lix	# of b	oraic	ls	# of pli	ies	statio	conduc	ting wir:	e?	other
Section 10			I													1
material	(A)	il resistanc _(B)(C)_ I resistant_		kness f	smoo	othw			non c	conductiv onductive quirement			std. Pa	arker		color provide sample) ther
Section 11							BRA	ND	ING				•		ł	
embossed/r	raised	impressi	on ink	myla	r oth	ner	tap	pe w	vidth o	character	r heig	ht othe	er details	attac (attac	h wo	rding)
industry sta CGA			MSHA_	U	L	_ от	HER_						d will ind & mfg. le		orkin	g pressure,
Section 12											uare		or might			
brand name	9		pa	art#					samp	ole (if ava	ailable	e)				
closest Par	ker ho								why o	does this	hose	e not fil	the nee	ed?		
required sel		yes	no	-	qty.	yes	sts requ s n	0	_	describ						
blueprints a		le ? bluep	orints a	ittached	?	other a	accts.	or m	arkets	s for this	produ	uct				
yes no_		yes_	no_													
other details	\$?															
send quota	tion to	: custome	er	Parker	Sale	sman_		:	signat	ure (requ	uestor	·)				

Made-To-Order

Material Handling

	page	series
DRILINE [®] Cement Hose	. 52	. 7218
Plaster & Concrete Hose	. 53	. 7236
SUPER-FLEX [®] Material Suction Hose	. 53	. 7363
Rock Dust Hose – MSHA	. 54	. 7393
Sand Blast Hose – 4 Ply	. 54	. 7244
Sand Blast Hose – 2 Ply	. 55	. 7245
SELECTAPIPE® Hose	. 56	. 7353, 7354
		7355, 7356
		7357
DYNAFLEX® PVC Standard Duty Suction Hose	. 57	. 7560
DYNAFLEX® PVC Multi-Purpose Suction Hose	. 57	. 7561
DYNAFLEX® PVC Transparent Suction/Discharge Hose	. 58	. 7570

Material Handling

DRILINE[®] Cement Hose Series 7218

Recommended for use on bulk transport trucks in discharge service. Abrasion resistant tube handles dry cement, lime, silica and other abrasive materials. Static dissipating tube and cover. 3:1 Design factor

Tube:

Cover: Reinforcement: Temp. Range: Branding: 1/8 in., 3/16 in. or 1/4 in. Black Natural Rubber Blend -Static Conductive Black SBR Rubber Multiple textile plies -30° F to +150° F PARKER/DAYCO SERIES 7218 DRILINE® CEMENT HOSE 60 PSI MAX WP MADE IN USA Embossed Brand

Brand Description:

Part No.	ID (in.)	ID (mm)	Reinf. Plies	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Tube Thickns. (in.)	Max. Rec. WP
7218-3018*	3	76.2	2	3.464	88.0	118	1/8	60
7218-30316*	3	76.2	2	3.582	91.0	150	3/16	60
7218-3025*	3	76.2	2	3.724	94.6	190	1/4	60
7218-3518*	3-1/2	88.9	2	3.964	100.7	137	1/8	60
7218-35316*	3-1/2	88.9	2	4.106	104.3	180	3/16	60
7218-3525*	3-1/2	88.9	2	4.224	107.3	218	1/4	60
7218-4018	4	102	2	4.480	113.8	155	1/8	60
7218-40316	4	102	2	4.622	117.4	204	3/16	60
7218-4025	4	102	2	4.740	120.4	247	1/4	60
7218-4518	4-1/2	114.3	2	4.964	126.1	173	1/8	60
7218-45316*	4-1/2	114.3	2	5.106	129.7	228	3/16	60
7218-4525	4-1/2	114.3	2	5.224	132.7	275	1/4	60
7218-5018	5	127.0	2	5.464	138.8	191	1/8	60
7218-50316*	5	127.0	2	5.606	142.4	252	3/16	60
7218-5025	5	127.0	2	5.724	145.4	303	1/4	60
7218-6018*	6	152.4	2	6.560	166.6	276	1/8	60
7218-60316*	6	152.4	2	6.630	168.4	311	3/16	60
7218-6025	6	152.4	2	6.748	171.4	372	1/4	60
7218-6318*	6-5/8	168.3	2	7.126	181	271	1/8	60
7218-63316*	6-5/8	168.3	2	7.255	184.3	342	3/16	60
7218-6325*	6-5/8	168.3	2	7.362	187.0	402	1/4	60

AVAILABILITY: Stock; * non-stock

LENGTHS: 100 ft. through 6 in., 50 ft. lengths for 5 5/8 in.

COUPLINGS: Coupling style 7, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

WARNING! Combination nipple with bands reduces the working pressure of the assembly to less than the hose's max working pressure. Refer to NAHAD Assembly Guidelines for working pressure.

Concrete Pump & Plaster Hose – 800 PSI Series 7236

Recommended for spraying wet plaster and wet or dry cement at pressures up to 800 PSI. The specially compounded tube is highly resistant to abrasive materials. Heavy wall resists kinking. Static dissipating tube and cover. 3:1 Design factor

3:1 Design facto

Tube: Cover: Reinforcement: Temp. Range: Branding:	Black Natural Rubber Blend - Static Conductive Black SBR Multiple textile plies -30° F to +150° F PARKER/DAYCO SERIES 7236 PLASTER & CONCRETE HOSE 800 PSI MAX WP MADE IN USA 001
Brand Description:	Tape Brand - White letters

Part No.	ID (in.)	ID (mm)	Reinf. Plies	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Bend	Max. Rec. WP	
7236-125500	1 1/4	31.8	4	1.882	47.8	78	9.0	800	
7236-150800	1 1/2	38.1	4	2.212	56.2	101	12.0	800	
7236-200800	2	50.8	4	2.762	70.2	138	24.0	800	
	('		·		•			•	

LENGTHS: 50 ft. and 100 ft. COUPLINGS: Coupling style 10

Coupling style 10, 11, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

SUPER-FLEX® Material Suction Hose

Series 7363

Designed for wet or dry abrasive product transfer service. The highly abrasion resistant tube is also static conductive, eliminating the need for a static wire. The cover is corrugated for flexible handling. This hose is rated for full suction and discharge.

3:1 Design factor

Tube:	Black Natural Rubber Blend, 3/16 in. thick - static conductive
Cover:	Black Natural Rubber Blend
Reinforcement:	Textile tire cord plies with helix wire
Temp. Range:	-40° F to +160° F
Branding:	PARKER/DAYCO SERIES 7363 SUPER-FLEX® ABRASIVE
	SUCTION AND DISCHARGE 100 PSI MAX WP MADE IN USA
Brand Description:	Tape Brand - White letters

Part No.	ID (in.)	ID (mm)	Reinf. Plies	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
7363-2000	2	50.8	2	2.740	69.6	159	6.0	100
7363-3000	3	76.2	2	3.800	96.6	246	9.0	100
7363-4000	4	101.6	2	4.875	123.8	360	12.0	100
7363-6000	6	152.4	2	6.937	176.2	560	18.0	100

LENGTHS: 100 ft. COUPLINGS: Couplin

Coupling style 7, 10, 11, 14, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details. **WARNING! Combination nipple and bands reduces the**

working pressure of the assembly to less than the hose's max working pressure. Refer to NAHAD Assembly Guidelines for working pressures.

Rock Dust Hose - MSHA

Series 7393

This hose is for rock dust service in underground mines, it is very light, flexible and durable. The cover is flame resistant and the tube is static dissipating. The hose also has a helix wire that reduces kinking at sharp bends.

Tube: Cover: Reinforcement: Temp. Range: Branding: Black Natural Rubber blend - static conductive Black Synthetic Rubber blend Multiple textile plies with helix wire -30° F to +160° F PARKER/DAYCO SERIES 7393 ROCK DUST HOSE FLAME RESISTANT MSHA NO. IC-123/22 MADE IN USA (MSHA number may vary) Emboss Brand

B. 4 * ...

Brand Description:

Part No.	ID (in.)	ID (mm)	Reinf. Plies	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
7393-1502	1 1/2	38.1	2	1.834	46.6	52	3.0	90
7393-1502050C	1 1/2	38.1	2	1.834	46.6	52	3.0	90
7393-2002	2	50.8	2	2.362	60.0	79	4.0	75
7393-2002050C	2	50.8	2	2.362	60.0	79	4.0	75
7393-2502	2 1/2	63.5	2	2.862	72.7	97	6.0	60
7393-2502050C	2 1/2	63.5	2	2.862	72.7	97	6.0	60
7393-3002	3	76.2	2	3.409	86.6	132	8.0	50
7393-3002050C	3	76.2	2	3.409	86.6	132	8.0	50

LENGTHS:

100 ft. lengths, all sizes, part #'s ending in "2".

COUPLINGS:

50 ft. lengths with soft cuffs, all sizes, part #'s ending "050C". IGS: Coupling style 7, or for other coupling recommendations refer to NAHAD Assembly Guidelines.

Sand Blast Hose - 4 Ply Series 7244

Designed for sandblasting of metal castings, steel, stone, cement or wherever abrasive materials are carried at high velocity. The high abrasion resistant, static conducting tube eliminates the need for a static wire. Cover is also static dissipating. 4:1 Design factor

Tube:

Cover: Reinforcement: Temp. Range: Branding: Black Natural Rubber blend - minimum 9/32 in. (.281) (7.1 MM) thick in & 1 in. & larger sizes-static conductive Black Natural Rubber blend-static conductive Multiple textile plies -30° F to +160° F PARKER/DAYCO SERIES 7244 SAND BLAST HOSE XXX PSI WP MADE IN USA Emboss Brand

Brand Description:

Part No.	ID (in.)	ID (mm)	Reinf. Plies	OD (IN.)	OD (mm)	Approx. Wt. Per 100 Ft.	Max. Rec. WP	
7244-50175	1/2	12.7	4	1.134	28.8	40	175	
7244-75175	3/4	19.1	4	1.500	38.1	65	175	
7244-100175	1	25.4	4	1.864	47.3	96	175	
7244-125150	1 1/4	31.8	4	2.118	53.8	113	150	
7244-150150	1 1/2	38.1	4	2.364	60.0	129	150	
7244-200100	2	50.8	4	2.866	72.8	163	100	
7244-250100	2 1/2	63.5	4	3.508	89.1	233	100	
7244-300100	3	76.2	4	3.938	100.0	251	100	

LENGTHS: COUPLINGS:

50 ft. special lengths up to 200 ft. available on quotation. Contact Customer Satisfaction Center.

54

AND SERIES 7244 SAND

: Not offered by Parker Dayco – For coupling recommendations refer to NAHAD Assembly Guidelines.

Sand Blast Hose - 2 Ply

Series 7245

The extra thick special tube is formulated to extend service life in sandblasting service. The hose has increased flexibility and kink resistance, which reduces operator fatigue. The tube and cover are both static dissipating and the cover is abrasion and weather resistant.

4:1 Design factor

Tube:	Black Natural Rubber blend - 19/32 in. (.300 in.) (7.8 MM) thick in 1 in. & larger sizes-static conductive
Cover:	Black SBR–static conductive
Reinforcement:	Two textile plies
Temp. Range:	-40° F to +160° F
Branding:	PARKER/DAYCO SERIES 7245 SANDBLAST HOSE XXX
-	PSI MAX WP MADE IN USA
Brand Description:	Emboss Brand

Part No.	ID (in.)	ID (mm)	Reinf. Plies	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Max. Rec. WP	
Traditional OD	Sizes							
7245-0527 7245-0750 7245-1000 7245-1250 7245-1500 7245-2000	1/2 3/4 1 1 1/4 1 1/2 2	12.7 19.1 25.4 31.8 38.1 50.8	2 2 2 2 2 2 2 2	1.056 1.488 1.858 2.118 2.364 2.864	26.8 37.8 47.2 53.8 60.0 72.7	33 64 94 114 130 164	150 150 150 150 150 100	

Special OD & Application Sizes

7245-0524	1/2	12.7	2	0.938	23.8	24	150
7245-0525	1/2	12.7	2	0.984	25.0	28	150
7245-0526	1/2	12.7	2	1.032	26.2	31	150
7245-0530	1/2	12.7	2	1.176	29.9	44	150
7245-0535	1/2	12.7	2	1.384	35.2	64	150
7245-1038	1	25.4	2	1.504	38.2	49	150
7245-1041	1	25.4	2	1.624	41.2	63	150
7245-12548	1 1/4	31.8	2	1.882	47.8	78	150

LENGTHS:

50 ft. and 100 ft.

COUPLINGS: Not offered by Parker/Dayco - For coupling recommendations refer to NAHÁD Assembly Guidelines.

Acid & Chemical
Air & Multi- Purpose
Fire Suppression
Food Handling
Made To Order
Material Handling
Petroleum Dispenser
 Petroleum Transport
Petroleum LP Gas
Oil Field
Special Applications
Steam
Water
Weldina

7245 13 AIVID

Welding

Couplings & Equipment

Safety & **Tech Data**

SELECTAPIPE[®] HOSE Series 7353, 7354, 7355, 7356 and 7357 NON-STOCK - MADE TO ORDER

SELECTAPIPE[®] hose serves as a flexible rubber "pipe" designed to replace metal pipe in applications where vibration, corrosion, or abrasion is a problem, or where flexibility is required. It is suited for the conveyance of wet or dry materials in pressure or suction applications. Typical uses include the handling of slag, coal, salt, cement, ashes, gravel, sand, acids and various slurries.

Size Availability: SELECTAPIPE[®] hose is available in the following inside diameters: 2 in., 2-1/2 in., 3 in., 3-1/2 in., 4 in., 4-1/2 in., 5 in., 6 in., 6-5/8 in., 8 in., 8-5/8 in., 10 in., 10-3/4 in., 12 in., 12-3/4 in., 14 in., 15 in., 16 in.*, 18 in.*, 20 in.*

Working Pressures: Working pressures and the corresponding Series number are:

- 25 PSI Series 7353 50 PSI - Series 7354
- 75 PSI Series 7355
- 100 PSI Series 7356

150 PSI - Series 7357 *Not available in sizes larger than 14 in. ID

Vacuum Rating: Unless specifically ordered without, all SELECTAPIPE[®] hose is built with a helix wire - carries a full vacuum rating.

Tube Variations: SELECTAPIPE[®] hose can be made with a Tan Gum rubber, black natural rubber blend - static conductive or neoprene tube, in thickness of 3/16 in., 1/4 in., 3/8 in. or other special thicknesses.

Cover: Black SBR is the standard cover compound for both smooth and corrugated covers. Other cover compounds are available.

Reinforcement: Multiple plies of textile fabric with or without helix wire.

Hose End Styles and End Fittings:

Built in DAYLOK® hose ends:

Available for 2 in., 2-1/2 in., 3 in., 4 in., 5 in., 6 in., 8 in., 10 in. and 12 in. ID SELECTAPIPE[®] hose, but not recommended for pressures over 150 PSI.

Built in Duck and Rubber Flanges:

Available for 2 in., 2-1/2 in., 3 in., 4 in., 5 in., 6 in., 8 in., 10 in., 12 in. and 14 in. ID hose.

Enlarged Ends or Soft Cuffs: Available on all sizes of hose.

Combination Nipples: Available for 2 in., 2-1/2 in., 3 in., 4 in., 5 in., 6 in., 8 in., 10 in. and 12 in. ID.

Plain Ends: Available on all sizes of hose.

Built in Nipples and Flanges: Available on all sizes of hose.

Notes on ordering: To be complete, orders for SELECTAPIPE[®] hose should specify the following:

- A ID
- B Length (Overall length if hose to have built-in ends)
- C Working pressure
- D Tube compound and thickness
- E Type ends or end fittings
- F With or without helix wire
- G Service application as much detail as possible.

DYNAFLEX® PVC Standard Duty Suction Hose

Series 7560

This is a flexible hose that will withstand full suction and discharge pressure. It will handle a variety of liquid and solid materials such as water, slurry transfer, sewage, air, chemicals, grains and pellets. A versatile hose for agriculture, mining, construction and industry.

3:1 Design factor

Tube:	Green PVC–Smooth
Cover:	Green PVC–Smooth
Reinforcement:	Rigid white PVC helix
Temp. Range:	-5° F to +140° F

Part No.	ID (in.)	OD (mm)	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
7560-750	3/4	19.1	1.050	26.7	20	3.0	120
7560-1000	1	25.4	1.220	31.0	25	4.0	120
7560-1250	1 1/4	31.8	1.500	38.1	32	5.1	120
7560-1500	1 1/2	38.1	1.790	45.5	39	5.9	110
7560-2000	2	50.8	2.300	58.4	57	8.6	95
7560-2500	2 1/2	63.5	2.900	73.7	74	11.4	70
7560-3000	3	76.2	3.350	85.1	99	13.7	60
7560-4000	4	101.6	4.470	113.5	160	18.9	50
7560-6000	6	152.4	6.600	167.6	310	31.5	45
7560-8000	8	203.2	8.800	223.5	523	48.4	35

LENGTHS: COUPLINGS:

100 ft. coils 3/4 in. through 6 in., 30 ft. straight lengths - 8 in.. Coupling style 7, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

DYNAFLEX® PVC Multi-Purpose Suction Hose

Series 7561

Extremely lightweight and flexible for general service, low pressure applications. Will handle both full suction and discharge pressure, and smooth bore design allows unrestricted flow. 3:1 Design factor

Tube:	Green PVC – Smooth
Cover:	Green PVC – Corrugated
Reinforcement:	Rigid white PVC spiral helix
Temp. Range:	-5° F to +140° F

Part No.	ID (in.)	ID (mm)	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP/68°F	Max. Rec. WP/ 140°F
7561-1500	1 1/2	38.1	1.790	45.5	33	2.0	80	25
7561-2000	2	50.8	2.300	58.4	46	3.0	65	20
7561-2500	2 1/2	63.5	2.870	72.9	60	5.0	60	20
7561-3000	3	76.2	3.300	83.8	75	7.0	45	15

LENGTHS: 100 ft. coils.

COUPLINGS: Coupling style 7, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

Acid & Chemical Air & Multi-Purpose Fire Suppression Food Handling Made То Order Material Handling Petroleum Dispenser Petroleum Transport Petroleum LP Gas

Chemical Charts

&

DYNAFLEX® PVC Transparent Suction/Discharge Hose – FDA Series 7570

Designed to handle a variety of applications where a lightweight, flexible suction/discharge hose is required. A steel helix wire combined with a thick wall construction gives the hose excellent kink, abrasion and crush resistance. The transparency allows for easy inspection of product being conveyed. Flexible to -10° F. The steel helix wire provides static conductivity. Meets CFR, Title 21 parts 170-199. 3:1 Design factor

Color: Construction: Temp. Range: Branding: Transparent PVC Multi-component PVC extrusion with helix wire -10° F to +120° F None

Part No.	ID (in.)	ID (mm)	OD (in.)	OD (mm)	Approx. Wt Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
7570-750	3/4	19.1	1.020	25.9	21	3.0	100
7570-1000	1	25.4	1.340	34.0	34	3.5	85
7570-1250	1 1/4	31.8	1.630	41.4	42	6.3	75
7570-1500	1 1/2	38.1	1.940	49.3	52	7.5	75
7570-2000	2	50.8	2.500	63.5	84	9.8	75
7570-2500	2 1/2	63.5	3.200	81.3	121	12.0	55
7570-3000	3	76.2	3.630	92.2	148	15.0	55
7570-4000	4	101.6	4.720	119.9	235	19.7	35
7570-6000	6	152.4	6.950	176.5	429	23.0	30

LENGTHS: 100 ft. coils

COUPLINGS: Coupling style 7, or for other coupling recommendations refer to NAHAD Assembly Guidelines.

Petroleum – Dispenser

	page	series
FLEX-EVER [™] 2000 Gasoline Pump Hose - UL330/ULC	60	. 7280
FLEX-EVER [™] 2000 Marine Refueling Hose - Blue Cover	60	. 7280BLM
SOFT-FLEX [®] 2000 Gasoline Pump Hose - UL330/ULC	61	. 7114
SUPER-FLEX [®] 2000 Gasoline Pump Hose - UL330/ULC	61	. 7124
PETROFLEX [™] 2000 Vapor Recovery Hose with Venturi	62	. 7574BTF
PETROFLEX [™] 2000 Vapor Recovery Hose without Venturi	63	. 7574BTN
FLEX-EVER ULTIMATE [™] VR Active Vapor Recovery System	64	. 7246BVX
FLEX-EVER ULTIMATE II VR Active Vapor Recovery Hose	64	. 7253BVD
Farm Pump Hose	65	. 7173, 7174

FLEX-EVER[™] 2000 Gasoline Pump Hose - UL330/ULC

Series 7280

IMPORTANT: REFER TO THE SAFETY AND TECHNICAL DATA INFORMATION SECTION FOR THE PROPER USE OF THIS HOSE.

Parker Dayco's premium gasoline dispenser hose. The dual helical wires of the heavy duty hardwall construction eliminates meter creep and helps prevent kinking. The Hypalon cover provides excellent ozone and abrasion resistance, resulting in longer service life. For use with gasohol blend, diesel, leaded, unleaded and oxygenated gasoline products. All assemblies are pressure and electrical conductivity tested per UL330 specifications. Blue, Green, Red and Yellow covers available on quotation.

4:1 Design factor

Reinforcement:

Temp. Range:

Branding:

Tube:

Cover:

Black Nitrile Black Hypalon Multiple textile braids with dual helix wire -40° F to +180° F PARKER/DAYCO SERIES 7280 FLEX-EVER[™] 2000 GASOLINE HOSE (UL) LISTED 655N MH530 (ULC) MADE IN USA DE2 (DATE CODE) PN16 TRbF131T.2 n: Tape Brand - White letter color

Brand Description:

Part No.	ID (in.)	ID (mm)	Reinf. Braids	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
7280-632	5/8	15.9	2	1.031	26.2	38	3.0	150
7280-752	3/4	19.1	2	1.172	29.8	45	4.0	150
7280-1002	1	25.4	2	1.453	36.9	60	5.0	150

LENGTHS:

Random lengths on reels and assemblies.

COUPLINGS: Only assemblies are available from Parker/Dayco – no individual coupling sales.

FLEX-EVER[™] 2000 Marine Refueling Hose - Blue Cover Series 7280BLM

IMPORTANT: REFER TO THE SAFETY AND TECHNICAL DATA INFORMATION SECTION FOR THE PROPER USE OF THIS HOSE.

This hose is designed for fueling of various water craft. The abrasion resistant blue cover is highly visible and resists marking boats, decks and docks. Can be used with diesel, leaded, unleaded and oxygenated gasoline products. 4:1 Design factor

Tube: Cover: Reinforcement: Temp. Range: Branding:	Black Nitrile Blue NBR/PVC Multiple textile braids with dual helix wire -40° F to +180° F PARKER/DAYCO SERIES 7280BL FLEX-EVER [™] 2000 MARINE REFUELING HOSE UL LISTED 655N MH530
Brand Description:	MADE IN USA Tape Brand - White letter color

Part No.	ID (in.)	ID (mm)	Reinf. Braids		-	Approx. Wt. Per 100 Ft.	Bend	Max. Rec. WP
7280-752BLM	3/4	19.1	2	1.172	29.8	44	3.0	150
7280-1002BLM	1	25.4	2	1.453	36.9	60	4.0	150

LENGTHS: Random lengths on reels or assemblies.

COUPLINGS: Only assemblies are available from Parker/Dayco – no individual coupling sales.

SERIES

7280

SOFT-FLEX[®] 2000 Gasoline Pump Hose - UL330/ULC Series 7114

IMPORTANT: REFER TO THE SAFETY AND TECHNICAL DATA INFORMATION SECTION FOR THE PROPER USE OF THIS HOSE.

SOFT-FLEX[®] 2000 hose is a quality softwall gasoline pump hose used in applications that do not require hardwall hose. The multiple spiral reinforcement provides increased strength over one or two braid hose without sacrificing flexibility or ease of handling. The Hypalon cover is highly resistant to cuts, abrasion, sun and weather, and will not scratch or mark vehicle finish. SOFT-FLEX[®] 2000 hose is for use with diesel; leaded, unleaded and oxygenated gasoline products. 4:1 Design factor

Tube:	Black Nitrile
Cover:	Black Hypalon
Reinforcement:	Multiple textile spirals with static wire
Temp. Range:	-40° F to +180° F
Branding:	PARKER/DAYCO SERIES 7114 SOFT-FLEX [®] 2000
-	GASOLINE HOSE 4SP UL LISTED 655N MH530
	MADE IN USA (DATE CODE)
Brand Description:	Ink Brand - White letter color

Part No.	ID (in.)	ID (mm)	Reinf. Spirals	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP			
7114-63154	5/8	15.9	4	0.960	24.4	26	5.0	150			
7114-75154	3/4	19.1	4	1.100	27.9	32	6.0	150			
7114-100154	1	25.4	4	1.360	34.5	42	8.0	150			
LENGTHS:		Random lengths on reels for 5/8 in. & 3/4 in., in cartons for 1 in. Also available in assemblies.									
	<u> </u>				· -						

COUPLINGS: Only assemblies are available from Parker/Dayco – no individual coupling sales.

SUPER-FLEX[®] 2000 Gasoline Pump Hose - UL330/ULC Series 7124

IMPORTANT: REFER TO THE SAFETY AND TECHNICAL DATA INFORMATION SECTION FOR THE PROPER USE OF THIS HOSE.

SUPER-FLEX[®] 2000 is a high quality wire braid hose for use anywhere a hardwall hose is required. The single wire braid construction provides static conductivity, increased hose strength, resistance to crushing, and a long service life. The SUPER-FLEX[®] 2000 is usable on reeling devices or applications where retractable cables are required to handle diesel, leaded, unleaded, and oxygenated gasoline products. The Hypalon cover is highly resistant to cuts, abrasion, sun, weather, and will not scratch or mark vehicle finish. 4:1 Design factor

Tube: Cover: Reinforcement: Temp. Range: Branding:	Black Nitrile Black Hypalon One wire braid -40° F to +180° F PARKER/DAYCO USA 7124 SUPER-FLEX® 2000 GASOLINE HOSE (UL) LISTED 655NMH530 (DATE CODE)
Brand Description:	Ink Brand - White letter color

Part No.	ID (in.)	ID (mm)	Reinf. Braids	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
7124-631	5/8	15.9	1	0.969	24.6	34	3.0	150
7124-751	3/4	19.1	1	1.090	27.7	39	4.0	150
7124-1001	1	25.4	1	1.340	34.0	49	5.0	150
	·			•		•	•	

LENGTHS: Random lengths on nominal 500 ft. reels and assemblies. **COUPLINGS:** Only assemblies are available from Parker/Dayco - no individual coupling sales.

Applications

Steam

Water

Welding

Couplings & Equipment

Safety & Tech Data

Chemical Charts

WYCC USA 7124 SUPER-FLEX ®

20

PETROFLEX[™] 2000 Balance Vapor Recovery Hose - UL330/CARB With Venturi Device Series 7574BTF**

This specially designed system, a hose within a hose, is required for compliant Environmental Protection Agency (EPA) Stage II vapor recovery gasoline dispensers that require a balance vapor recovery hose with a liquid removal device. The lightweight, flexible, and easy to handle hose, weighs about the same as a conventional 3/4 in. hose. The couplings mate with all Balance Vapor Recovery dispensers and nozzles. UL and California Air Resources Board (CARB) approved. Covered by one or more U.S. patents and pending applications. Refer to CARB's Executive Orders for hose and dispenser applications.

For non-Venturi Model, see Series 7574BTN

Inner	Hose			
Tube:	Black Synthetic Rubber			
Cover:	Black Synthetic Rubber			
Reinforcement:	One textile braid with static wire			
Outer Hose				
Tube:	Black TPR			
Cover:	Black TPR			
Reinforcement:	Helix wire encapsulated in TPR			

Part No.	Inner Hose ID (in.)	Hose ID		Hose ID	Outer Hose ID (mm)	System OD (in.)	OD	Weight	Max. Recom. WP (PSI)
7574BTF*	* 5/8	15.9	1	1 1/2	38.1	1.700	43.2	.5 lbs	150
**inches of	of length								

LENGTHS:	Assemblies only.
COUPLINGS:	Special PETROFLEX vapor recovery couplings 1 7/8 in. –12UN-2A
CLAMPS:	threads- no maintenance required. Special Parker Dayco retractor cable hose clamp 7658-0017.

PETROFLEX[™] 2000 Balance Vapor Recovery Hose - UL330/CARB Without Venturi Device Series 7574BTN

This specially designed system, a hose within a hose, is required for compliant Environmental Protection Agency (EPA) Stage II vapor recovery gasoline dispensers. The lightweight, flexible, and easy to handle hose, weighs about the same as a conventional 3/4 in. hose. The couplings mate with all Balance Vapor Recovery dispensers and nozzles. UL and California Air Resources Board (CARB) approved. Covered by one or more U.S. patents and pending applications. Refer to CARB's Executive Orders for hose and dispenser applications.

For Venturi Model, see Series 7574BTF

Inner Hose					
Tube:	Black Synthetic Rubber				
Cover:	Black Synthetic Rubber				
Reinforcement:	One textile braid with static wire				

Oute	er Hose
Tube:	Black TPR
Cover:	Black TPR
Reinforcement:	Helix wire encapsulated in TPR

Part No.		Hose ID	Reinf.		Hose ID	OD	OD	Weight	Recom.
7574BTN-*	* 5/8	15.9	1	1 1/2	38.1	1.700	43.2	.5 lbs.	150
**'	C 1 11.								

**inches of length

LENGTHS:	Assemblies	only.
----------	------------	-------

COUPLINGS:	Special PETROFLEX vapor recovery couplings 1 7/8 in.
	-12UN-2A threads- no maintenance required.
	Special Parker/Dayco retractor cable hose clamp 7658-001

Special Parker/Dayco retractor cable hose clamp 7658-0017. JLAMPS:

	Acid & Chemical
	Air & Multi- Purpose
	Fire Suppression
in the second se	Food Handling
-	Made To Order
	Material Handling
	Petroleum Dispenser
	Petroleum Transport
	Petroleum LP Gas
	Oil Field
	Special Applications
	Steam
	Water
	Welding
10	Couplings & Equipment
P	Safety & Tech Data

IMPORTANT: REFER TO THE SAFETY AND TECHNICAL DATA INFORMATION SECTION FOR THE PROPER USE OF THIS HOSE.

Series 7246 Flex-Ever is the ultimate for all vacuum-assisted dispensers. It's lightweight and flexible, with a new swivel end coupling design for easier handling and longer life. The kink resistant outer hose protects the inner hose. Flex-Ever's crimped-on 5/16 in. inner vapor line provides proper vapor flow levels and maximum coupling retention. The entire system is formulated to withstand oxygenated and blended fuels, in addition to being 100% factory tested for pressure and conductivity. UL listed, CARB, Cal-OSHA, California Weights and Measures and State Fire Marshall approved.

4:1 Design factor

Tube: Black Nitrile Special Grade Nylon - Inner Vacuum Line								
Cover: Reinforcement: Temp. Range: Branding: Brand Descripti	on:	Special Grade Nylon - Inner Vacuum Line Black Hypalon, wrap impression High tensile textile braids and helix wires -40° F to +180° F PARKER/DAYCO SERIES 7246 FLEX-EVER ULTIMATE VR ACTIVE VAPOR RECOVERY STEEL HELIX REINFORCED UL LISTED 30N4 MH13583 VAPOR RECOVERY FLAMMABLE LIQUID HOSE ASSEMBLY MADE IN USA DE2 3/97 CARB APPROVED White Ink - White letter color						ORCED
Part No.	ID (in.)	ID (mm)	Reinf. Braids	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
7246BVX-***	3/4	19.1	2	1.172	29.8	45.2	3.0	150

LENGTHS: COUPLINGS: Assembled to order only - *** add length in inches.

Special metric M34 threads. BVX = Rigid by Swivel. BVXS = Swivel each end.

FLEX-EVER ULTIMATE II VR Active Vapor Recovery Hose Series 7253 BVD

Series 7253 Flex-Ever is the ultimate 7/8 in. for all inverted vacuum-assisted dispensers. It's lightweight and flexible, with a frictionless swivel coupling design for easier handling and longer life. The rugged, kink resistant outer hose protects the inner hose. Flex-Ever's crimped-on 5/16 in. inner vapor line provides proper vapor flow levels and maximum coupling retention. The entire system is formulated to withstand oxygenated and blended fuels. All 7253 assemblies are 100% factory tested for pressure and conductivity ratings. UL, CARB, Cal-OSHA, California Weights and Measures, and State Fire Marshall approved. 4:1 Design factor

Tube:	Black Nitrile Special Grade Nylon - Inner Vacuum Line
Cover:	Black Hypalon, wrap impression
Reinforcement:	High tensile textile braids and helix wires
	-40° F to $+180^{\circ}$ F
Temp. Range:	
Branding:	PARKER/DAYCO SERIES 7253BVD FLEX-EVER ULTIMATE II
	VR ACTIVE VAPOR RECOVERY STEEL HELIX REINFORCED
	UL LISTED 30N4 MH13583 VAPOR RECOVERY
Brand Description:	Ink Brand - White Letter Color

Part No.	ID (in.)	ID (mm)	Reinf. Braids	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP	
7253BVD-***	7/8	22.2	2	1.301	54.3	54.3	3.0	150	
LENGTHS: COUPLINGS:	Assembled to order only - *** add length in inches. Special metric M34 threads.								

Ω

Farm Pump/Gravity Tank Hose Series 7173 - RED COVER Series 7174 - BLACK COVER No Static Wire - NOT U.L. Listed

For dispensing oil, leaded and unleaded gasoline and diesel fuel from hand pump and gravity feed farm pumps, skid tanks, drums and storage tanks.

WARNING! Not for service station use! The proliferation of self-service gas station has created a situation where millions of consumers are daily operators of gasoline pumps. Proper hose selection must take into consideration the amount of use and abuse a hose must withstand during its service life. Only the highest quality, thoroughly tested, UL 330 listed hose must be selected for service station applications. The proper hose plus constant inspection is the best protection against user accidents. DO NOT USE PARKER/DAYCO FARM PUMP/ GRAVITY TANK HOSE FOR FUELING OF AIRCRAFT!

Tube: Cover: Reinforcement: Temp. Range: Branding:	Black Nitrile Black or Red Neoprene – Smooth Cover Multiple textile spirals -40° F to +180° F PARKER/DAYCO SERIES 7173 FARM PUMP/GRAVITY TANK
Branding: Brand Description:	FUEL HOSE 3/4 in. ID–50 PSI MAX WP, MADE IN USA DE 1 (month/year) White Ink
Brand Description.	

Part No.	ID (in.)	OD (in.)	Approx. Wt./100 Ft. (Ibs.)	Reinf. Layers (spiral)	Min. Bend Radius (in.)	Max. Rec. WP PSI
7173-75052	3/4	1.0625	29	2	5.0	50
7174-75052	3/4	1.0625	29	2	5.0	50
7173-100052	1	1.375	46	2	8.0	50
7174-100052	1	1.375	46	2	8.0	50

LENGTHS:Random length reels (-50 ft. /+0 ft.) 80% 1 piece, 20% 2 piece.
50 ft. min. length. 1 in. = 300 ft. reels - 3/4 in. = 400 ft. reels.COUPLINGS:Externally crimped NPT couplings - no individual coupling sales, which are
sold or quoted seperately. For other coupling recommendations refer to

NAHAD Assembly Guidelines.

D	Acid & Chemical
3	Air & Multi- Purpose
	Fire Suppression
	Food Handling
	Made To Order
	Material Handling
	Petroleum Dispenser
	Petroleum Transport
	Petroleum LP Gas
	Oil Field
	Special Applications
	Steam
	Water
	Welding
	Couplings & Equipment
	Safety & Tech Data

Chemical

Petroleum – Dispenser

Petroleum – Transport

	page	series
Gold Label [®] Corrugated Light Weight Tank Truck Hose	. 68	. 7222
TRANSLITE® Tank Truck Hose.	. 69	. 7216, 7217
Heavy Duty Fuel Suction and Discharge Hose	. 70	. 7330
Oil Suction/Discharge Hose	. 70	. 7302, 7372
Transport Fuel Discharge Hose - Softwall	. 71	. 7224, 7225
Heavy Duty Fuel Discharge Hose	. 71	. 7351
Hot Tar and Asphalt Hose	. 72	. 7290
MPW - 1000 [®] Multi-Purpose Hose	. 72	. 7204
GOLD LABEL® Aircraft Refueling Hose.	. 73	. 7300
Deadman Twin Sensing Hose – Red & Green	. 74	. 7139
Twin Sensing Hose - Green & Yellow	. 74	. 7140
SAE 30R7 Fuel Line and Vapor Emission Hose		

SERIES 7222 GOLD LABEL®

TANK

Gold Label[®] Corrugated Light Weight Tank Truck Hose Series 7222 - Black Cover Series 7223 - Red Cover

An extremely flexible rubber hose used for the transfer of petroleum products, the hose is lighter weight and more durable than plastic hose. The hose is designed for full suction, discharge service and Stage I vapor recovery applications. GOLD LABEL® hose won't pin-hole in hot weather and won't crack in cold weather. The wide corrugation provides superior kink resistance and outstanding flexibility while eliminating the need for banding sleeves. 4:1 Design factor

Tube: Cover: Reinforcement: Temp. Range:	Black Nitrile Black or Red Neoprene Multiple textile plies with helix wires -20° F to +180° F
Branding:	PARKER/DAYCO SERIES 7222 GOLD LABEL LIGHT WEIGHT TANK TRUCK HOSE 150 PSI MAX WP MADE IN USA 001
Brand Description:	Tape Brand - Black letters on gold stripe

Part No.	ID (in.)	ID (mm)	Reinf. Plies	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
7222-150150	1 1/2	38.1 50.8	2	2.008 2.528	51.0 64.2	91 123	3.0 4.0	150 150
7222-250150	2 1/2	63.5	2	3.028	76.9	152	5.0	150
7222-300150 7222-400150	3 4	76.2 101.6	2 2	3.542 4.565	90.0 116.0	189 256	5.0 6.0	150 150
7223-2000 7223-2500 7223-3000 7223-4000	2 2 1/2 3 4	50.8 63.5 76.2 101.6	2 2 2 2	2.528 3.028 3.542 4.565	64.2 76.9 90.0 116.0	106 139 173 228	4.0 5.0 5.0 6.0	150 150 150 150

LENGTHS:

COUPLINGS:

100 ft. is standard. Special Lengths up to 200 ft. on quotation. Contact Customer Satisfaction Center.

: Coupling style 6, 7, 10, 11, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

WARNING! Combination nipple with bands reduces the working pressure of the assembly to less than the hose's max working pressure. Refer to NAHAD Assembly Guidelines for working pressures.

TRANSLITE® Tank Truck Hose Series 7216 - BLACK Series 7217 - RED

A lightweight and flexible hose used in the transfer of gasoline, alcohol blended fuels, diesel fuels and other petroleum products. The hose is designed for full suction and discharge applications.

4:1 Design factor

Tube: Cover: Reinforcement: Temp. Range: Branding:

Brand Description:

Black Nitrile Black or Red Neoprene Multiple textile plies with helix wire -20° F to +180° F PARKER/DAYCO SERIES 7216 TRANSLITE® TANK TRUCK HOSE XXX PSI MAX WP MADE IN USA 001 Tape Brand - Black letters on orange stripe - 7216 Red letters on white stripe - 7217

Part No.	ID (in.)	ID (mm)	Reinf. Plies	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
7216-1002	1	25.4	2	1.364	34.6	46	2.0	150
7216-1252	1 1/4	31.8	2	1.670	42.4	65	3.0	150
7216-1502	1 1/2	38.1	2	1.960	49.8	92	4.0	150
7216-2002	2	50.8	2	2.512	63.8	120	6.0	150
7216-2502	2 1/2	63.5	2	3.028	76.9	155	9.0	150
7216-3002	3	76.2	2	3.552	90.2	198	12.0	150
7216-4002	4	102.0	2	4.626	117.5	360	16.0	150
7216-5004	5	127.0	4	5.748	146.0	487	39.0	100
7216-6004	6	152.4	4	6.772	172.0	546	48.0	75
7216-8004*	8	203.2	4	8.888	225.8	812	72.0	75

LENGTHS: 100 ft.; 8 in. = 50 ft. – Lengths up to 200 ft. available on quotation, contact Customer Satisfaction Center.

for working pressure.

COUPLINGS: Coupling style 6, 7, 10, 11, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details. WARNING! Combination nipple with bands reduces the working pressure of the assembly to less than the hose's max working pressure. Refer to NAHAD Assembly Guidelines

Air & Multi-Purpose Fire Suppression Food Handling Made То Order Material Handling Petroleum Dispenser Petroleum Transport

DAVICO: SERIES

7216 TRANSLITE®

TANK TRUC

Acid & Chemical

Petroleum LP Gas

Oil Field

Special Applications

Steam

Water

Welding

Couplings & Equipment

Safety & Tech Data

7330 H

TANK TRUC

250 PSI

MAX

× P

Heavy Duty Fuel Suction and Discharge Hose Series 7330

Designed for heavy duty service in the transfer of petroleum products including gasoline, oil, and diesel fuels. The hose is designed for suction and discharge applications.

4:1 Design factor

Tube:	Black Nitrile
Cover:	Black Neoprene
Reinforcement:	Multiple textile plies with helix and static wire
Temp. Range:	-20° F to +180° F
Branding:	PARKER/DAYCO SERIES 7330 HD TANK TRUCK XXX
	PSI MAX WP MADE IN USA 001
Brand Description:	Tape Brand - Red letters on white stripe

Part No.	ID (in.)	ID (mm)	Reinf. Plies	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
7330-1250	1 1/4	31.8	2	1.686	42.8	71	6.0	250
7330-1500	1 1/2	38.0	2	1.976	50.2	100	8.0	250
7330-2000	2	50.8	4	2.622	66.6	166	8.0	250
7330-3000	3	76.2	4	3.654	92.8	241	15.0	250
7330-4000	4	101.6	4	4.812	122.2	387	20.0	250
7330-6000	6	152.4	4	6.906	175.4	665	36.0	200

LENGTHS: COUPLINGS:

100 ft. Other lengths on quotation up to 200 ft. continuous. Coupling style 2, 3, 6, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the

back of the catalog for coupling details.

Oil Suction/Discharge Hose Series 7302 - 200 PSI - Series 7372 - 150 PSI **MADE-TO-ORDER**

Designed for heavy-duty use in transferring petroleum products from barges or tankers to on-shore storage tanks or pipelines. Designed for full suction and discharge applications. Meets Coast Guard specifications. Also available with viton tube. 4

:1 Design factor	
------------------	--

Tube:	Black Nitrile
Cover:	Black Neoprene
Reinforcement:	Multiple textile plies with helix wire
Temp. Range:	-30° F to +185° F
Branding:	None
	Approx. Max.

Part No.	ID (in.)	ID (mm)	Approx. Wt. Per 100 Ft.	Max. Rec. WP	
7302-40*	4	101.6	528	200	
7302-60*	6	152.4	885	200	
7302-80*	8	203.2	1879	200	
7302-100*	10	254.0	2365	200	
7302-120*	12	304.8	3246	200	
7372-40*	4	101.6	497	150	
7372-60*	6	152.4	842	150	
7372-80*	8	203.2	1759	150	
7372-100*	10	254.0	2223	150	
7372-120*	12	304.8	3077	150	

LENGTHS: *Add length in ft. to complete part number

(max. 50 ft. for 4 in. - 8 in., max. 45 ft for 10 in. - 12 in.).

COUPLINGS: Contact Parker/Dayco for built-in or swaged steel nipples and flanges, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

Transport Fuel Discharge Hose - Softwall Series 7224 - RED COVER Series 7225 - BLACK COVER

This hose is used in truck mounted transport service applications, which include discharge of gasoline, oil and fueling of diesel locomotives, buses and trucks. 4:1 Design factor

Tube:	Black Nitrile						
Cover:	Red or Black Neoprene						
Reinforcement:	Multiple textile plies with static wire						
Temp. Range:	-20° F to +180° F						
Branding:	7224 PARKER/DAYCO SERIES 7224 FUEL DISCHARGE						
-	200 PSI MAX WP MADE IN USA 001						
	7225 PARKER/DAYCO SERIES 7225 FUEL DISCHARGE						
	200 PSI MAX WP MADE IN USA 001						
Brand Description:	7224 - Tape Brand - Red letters on black stripe						
-	7225 - Tape Brand - Black letters on red stripe						

Part No.	ID (in.)	ID (mm)	Reinf. Plies	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
-1500	1 1/2	38.1	2	2.000	50.8	84	9.0	200
-2000	2	50.8	2	2.504	63.6	108	11.0	200
-3000	3	76.2	2	3.504	89.0	161	12.0	200
-4000	4	101.6	2	4.536	115.2	209	20.0	200

LENGTHS: 100 ft. is standard. Special Lengths up to 200 ft. on quotation. Contact Customer Satisfaction Center.

COUPLINGS: Coupling style 6, 7, 10, 11, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details. WARNING! Combination nipple with bands reduces the working pressure of the assembly to less than the hose's max working pressure. Refer to NAHAD Assembly Guidelines

Heavy Duty Fuel Discharge Hose Series 7351

for working pressure.

Softwall petroleum transfer hose for heavy duty service. The high grade nitrile tube will handle gasoline, oil and diesel fuel. The high grade Neoprene cover is resistant to weather, oil and abrasion.

4:1 Design factor

Tube:	Black Nitrile
Cover:	Black Neoprene
Reinforcement:	Multiple textile plies with static wire
Temp. Range:	-22° F to +180° F
Branding:	PARKER/DAYCO SERIES 7351 FUEL DISCHARGE
-	HOSE XXX PSI MAX WP MADE IN USA 001
Brand Description:	Tape Brand - White letters on red stripe

Part No.	ID (in.)	ID (mm)	Reinf. Plies	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
7351-2000	2	50.8	4	2.716	69.0	170	24	200
7351-3000	3	76.2	4	3.780	96.0	262	36	200
7351-4000	4	102.0	4	4.772	121.2	320	48	200
7351-6000	6	152.4	4	6.812	173.0	501	72	150
7351-8000	8	203.2	4	8.646	219.6	500	96	150

LENGTHS: 100 ft. COUPLINGS:

Coupling style 2, 3, 6, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

	Purpose
	Fire Suppression
-	Food Handling
	Made To Order
	Material Handling
	Petroleum Dispenser
-2	Petroleum Transport
	Petroleum LP Gas
	Oil Field
Z	Oil Field Special Applications
	Special
	Special Applications
	Special Applications Steam
	Special Applications Steam Water

Acid &

Chemical

Air &

Multi-

Safety & **Tech Data**

Series 7290

Designed for bulk transfer and delivery of hot petroleum products and hot wax. Will handle full suction and discharge pressures. 4:1 Design factor

Tube: Cover: Reinforcement: Temp, Range:

Brand Description:

Branding:

Black Nitrile Black Neoprene Multiple textile plies with helix wire -20° F to +350°/400° F PARKER/DAYCO USA 7290 HOT TAR & ASPHALT HOSE XXX PSI MAX WP 001 Emboss Brand

Part No.	ID (in.)	ID (mm)	Reinf. Plies	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
7290-1000 7290-1500 7290-2000 7290-3000 7290-3000 7290-4000	1 1 1/2 2 3 4	25.4 38.0 50.8 76.2 102.0	4 4 4 4	1.559 2.125 2.630 3.701 4.717	39.6 54.0 66.8 94.0 119.8	76 127 163 280 365	3.0 4.0 6.0 12.0 16.0	200 175 175 150 100

LENGTHS: COUPLINGS:

100 ft. – other lengths on quotation, contact Customer Service.
Coupling style 2, 3, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

MPW - 1000[®] Multi-Purpose Hose

Series 7204

This versatile multi-purpose hose is ideal for rugged service in many industrial and high pressure steam cleaning applications. In addition to air and water service, the oil resistant tube and cover will handle a variety of acids and chemicals. Suitable for saturated steam service to 150 PSI and temperatures to 368° F. Also suitable to convey hot tar, wax and glue at 300° F continuous, 350° F intermittent. 4:1 Design factor (10:1 for 150 PSI steam applications)

Tube: Cover: Reinforcement: Temp. Range: Branding: Brand Description:	Black Nitrile Perforated Black Neoprene One wire braid -20° F to +300°/350°/368° F (steam) PARKER/DAYCO 7204 - MPW 1000 PSI MAX WP (DATE CODE) MADE IN USA Embossed Brand

Part No.	ID (in.)	ID (mm)	Reinf. Layers	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP	Max. Steam WP
7204-381 7204-501 7204-751 7204-1001	3/8 1/2 3/4 1	9.5 12.7 19.1 25.4	2	0.781 0.906 1.187 1.500	30.1	28 34 52 75	5.0 7.0 9.5 12.0	1000 1000 1000 1000	150 150 150 150

LENGTHS:

S: Random lengths on reels. Max. 600 ft., min. 400 ft. 5 pieces max. per reel with 50 ft. length.

COUPLINGS: Coupling style 2, 3, 8, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

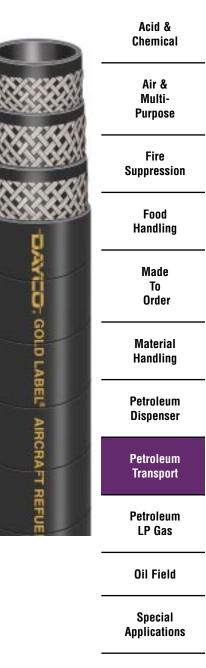
GOLD LABEL[®] Aircraft Refueling Hose

Series 7300

Aircraft refueling is a critical application which requires a hose that meets the applicable standards such as NFPA 407, API 1529 and BS 3158 specifications including 100% pressure testing and cleaning of the completed hose assemblies. Care should be taken that the hose is not kinked, dragged, run over by vehicles, or otherwise abused. Frequently inspect the hose for cover cuts, gouges, reinforcement exposure, coupling movement, or leakage, any signs of the mentioned requires the hose assembly to be removed from service immediately and discarded. Hydrostatically pressure test at twice the normal working pressure of the assembly periodically.

DO NOT use gasoline curb pump hose for refueling of aircraft.

The one hose to service the majority of commercial, military and private aircraft fueling requirements. The GOLD LABEL[®] hose system meets or exceeds all current API 1529/89/Type C:Grade 2, BSEN1361:1997, Type C and NFPA 407/96 standards. The high grade nitrile tube reduces the risk of contamination of fuel and fuel delivering system, while the multiple braided reinforcement provides improved kink resistance, excellent coupling retention and unsurpassed burst strength. The semi-conductive neoprene cover offers excellent abrasion, ozone and oil resistance, which prolongs the service life of the hose.


4:1 Design factor

Tube: Cover: Reinforcement: Temp. Range:	Black Nitrile Black semi-conductive Neoprene Multiple textile braids -40° F to +158° F
	PARKER/DAYCO AIRCRAFT FUELING SERIES 7300 1 ID API 1529/98/C/2-EN1361/97/C-NFPA 407 MAX WP 300 PSI (DATE CODE) 001 MADE IN USA
Brand Description:	Embossed
Branding: Side 2	PARKER/DAYCO GOLD LABEL AIRCRAFT REFUELING HOSE - MADE IN USA
Brand Description:	Tape Brand - Gold letter color

Part No.	ID (in.)	ID (mm)	Reinf. Braids	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
7300-1002K	1	25.9	2	1.540	39.1	66	8	300
7300-1252K	1 1/4	32.3	2	1.790	45.5	79	9	300
7300-1502K	1 1/2	38.1	2	2.080	52.8	102	12	300
7300-2002K	2	51.6	2	2.640	67.1	141	29	300
7300-2502K	2 1/2	63.5	2	3.210	81.5	201	30	300
7300-3003K	3	76.2	3	3.786	96.2	264	36	300
7300-4003K	4	101.6	3	5.000	127.0	451	48	300

LENGTHS:

Random lengths 45 ft. to 150 ft. sold as assemblies and 100% tested by Parker/Dayco or Parker/Dayco Certified Couplers. **COUPLINGS:** Only coupled assemblies are available from Parker/Dayco. No individual couplings for resale.

Steam

Water

Welding

Couplings & Equipment

> Safety & **Tech Data**

Petroleum - Transport

Deadman Twin Sensing Hose

Series 7139

Designed for deadman systems that connect hand control to hydrant and refueling trucks. The nitrile tube resists compressor oil while the cover is oil, abrasion and weather resistant.

4:1 Design factor

7139-251

1/4

6.4

VIN HOSE
USA
n. Max.
nd Rec.
ius WP
l ii

LENGTHS: 725 ft. maximum, 400 ft. minimum, 3 pieces maximum, 50 ft. minimum length.

2

COUPLINGS: Coupling style 5, 8, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

0.531

13.5

19

2.0

200

Twin Sensing Hose - Green & Yellow Series 7140

This hose is designed for air and fuel sensing service on aircraft refueling systems. The hose consists of an oil and fuel resistant nitrile tube and an abrasion, oil and weather resistant cover.

4:1 Design factor

Tube:Black NitrileCover:Green and Yellow NeopreneReinforcement:Multiple Textile SpiralsTemp. Range:-30° F to +200° FBranding:PARKER/DAYCO SERIES 7140 TWIN SENSING 3/8 ID (9.5 MM) 250 PSIBrand Description:Ink Brand - White letter color					HOSE			
Part No.	ID (in.)	ID (mm)	Reinf. Spirals	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
7140-381	3/8	9.5	2	0.656	16.7	29	3.0	250
LENGTHS: COUPLINGS:						x., 50 ft. m g recomm		

GS: Coupling style 5, 8, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

SAE 30R7 Fuel Line and Vapor Emission Hose

Gasoline and Vapor Emission Hose manufactured to meet SAE 30R7 specifications. Durable cover resists deterioration from oil, grease, heat and ozone and gives long service life.

4:1 Design factor

Tube: Cover: **Reinforcement:** Temp. Range: Branding: Brand Description: Black NBR Black Neoprene Textile Spirals -30° F to +250° F 3/16 in. ID FUEL/VAPOR LINE SAE30R7 (DATE CODE) Ink Brand - White letter color

Part No.	ID (in.)	ID (mm)	Reinf. Layers	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
39553	3/16	4.8	2	0.406	10.3	7	2.0	75
39550	1/4	6.4	2	0.500	12.7	10	2.0	50
39551	5/16	7.9	2	0.563	14.3	11	3.0	50
39552	3/8	9.5	2	0.625	15.9	14	3.5	50

LENGTHS: 250 ft. per spool, max 3 pcs. No piece shorter than 25 ft. One spool per carton.

COUPLINGS: Coupling style 5, 8, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

Steam

Water

Welding

Couplings & Equipment

Safety & **Tech Data**

Chemical Charts

Acid &

Petroleum – Transport

Petroleum – LP Gas

	page	series
L.P. Gas Hose - UL 21, CGA Type I	78	. 7132
L.P. Gas - UL 21, CGA Type I	79	. 7232
L.P. Gas - UL 21, Stainless Steel	80	. 7231
L.P. Gas Hose - UL 569, CGA Type I	81	. 7170
L.P. Gas Vapor Hose	82	. 7122
L.P. Gas Hose - UL 21, CGA Type I	83	. 7233, 7243

L.P. Gas Hose - U.L. 21 - CGA Type I Series 7132 - Spiral

WARNING! For LP and †Natural Gas use only! Do not use in anhydrous ammonia or refrigeration applications! Do NOT use male swivel couplings or screw-together re-attachable fittings or any type of couplings that use O-Ring sealing surfaces!

For conveyance of LP Gas products where a 3/16 in. through 1 in. ID is required. Meets or exceeds all Underwriter Laboratories (UL®) 21 requirements as well as CGA (Canadian Gas Association) Type 1, LP Gas hose requirements.

Can be used for natural gas with †application specific criteria. The molecules of natural gas are small, enhancing its ability to permeate through standard rubber or PVC hose constructions. The permeation process is more rapid as the working pressure increases, and natural gas accumulates with potentially dangerous consequences. Use pipe, non-permeable tubing or hose with barrier constructions to convey natural gas. Series 7132 L.P. Gas hose can be used for natural gas service, but ONLY under the following conditions:

† <u>Maximum</u> working pressure of the application not to exceed 50 PSI. The application <u>must</u> be in an outside (non-enclosed) environment. Applications that are in an enclosed environment or greater than 50 PSI working pressure <u>are not recommended</u>.

<u>Do not</u> use LPG hose for fuel hose in vehicles using CNG (Compressed Natural Gas).

In Natural Gas applications, copper, brass, or other copper-containing fittings <u>should be</u> in accordance to the AGA rating of the particular apparatus. The hose used with Natural Gas <u>should be</u> subjected to the same rigorous tests and inspection as if it were being used with LPG.

5:1 Design factor

Tube: Cover: Reinforcement: Temp. Range:

Branding:

Black Nitrile Perforated Black Neoprene Multiple textile spirals -40° F to +180° F (NOTE: The hose construction is capable of this rating, however, LP Gas should **NEVER** be conveyed over 140° F) PARKER/DAYCO 7132 CGA TYPE I CAUTION - LP GAS HOSE MH6737 UR® (UL® Recognized component, with backwards "R") ISSUE NO. XXXX 350 PSI MAX WP MADE IN USA DE1 (DATE CODE) Impression Brand

Brand Description:

Part No.	ID (in.)	ID (mm)	Reinf. Spirals	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
7132-19352	3/16	4.8	2	0.510	13.0	11	2.0	350
7132-25354	1/4	6.4	4	0.610	15.5	15	2.5	350
7132-31354	5/16	7.9	4	0.690	17.5	19	3.0	350
7132-38354	3/8	9.5	4	0.760	19.1	22	3.5	350
7132-50354	1/2	12.7	4	0.937	23.8	31	4.5	350
7132-75354	3/4	19.1	4	1.250	31.8	51	6.5	350
7132-75354100	3/4	19.1	4	1.250	31.8	51	6.5	350
7132-75354125	3/4	19.1	4	1.250	31.8	51	6.5	350
7132-75354150	3/4	19.1	4	1.250	31.8	51	6.5	350
7132-100354	1	25.4	4	1.500	38.1	62	7.5	350
7132-100354100	1	25.4	4	1.500	38.1	62	7.5	350
7132-100354125	1	25.4	4	1.500	38.1	62	7.5	350
7132-100354150	1	25.4	4	1.500	38.1	62	7.5	350
7132-100354200	1	25.4	4	1.500	38.1	62	7.5	350

LENGTHS:

Reels, 90% 1 piece, 10% 2 piece, minimum length 50 ft. with a + 50 ft./-0 ft. reel footage tolerance.

COUPLINGS: Coupling style 2, 3, 8, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of catalog for coupling details.

L.P. Gas Hose - U.L. 21 - CGA Type I Series 7232

WARNING! For LP Gas use only! Do not use in anhydrous ammonia or refrigeration applications! Do NOT use male swivel couplings or screw-together re-attachable fittings or any type of couplings that use O-Ring sealing surfaces!

For conveyance of LP Gas products where a 1 1/4 in. through 2 in. ID is required. Meets or exceeds all Underwriter Laboratories (UL[®]) 21 requirements as well as CGA (Canadian Gas Association) Type 1, LP Gas hose requirements.

Can be used for natural gas with †application specific criteria. The molecules of natural gas are small, enhancing its ability to permeate through standard rubber or PVC hose constructions. The permeation process is more rapid as the working pressure increases, and natural gas accumulates with potentially dangerous consequences. Use pipe, non-permeable tubing or hose with barrier constructions to convey natural gas. Series 7232 L.P. Gas hose can be used for natural gas service, but ONLY under the following conditions:

† <u>Maximum</u> working pressure of the application not to exceed 50 PSI. The application <u>must</u> be in an outside (non-enclosed) environment. Applications that are in an enclosed environment or greater than 50 PSI working pressure <u>are not recommended</u>.

<u>Do not</u> use LPG hose for fuel hose in vehicles using CNG (Compressed Natural Gas).

In Natural Gas applications, copper, brass, or other copper-containing fittings <u>should be</u> in accordance to the AGA rating of the particular apparatus. The hose used with Natural Gas <u>should be</u> subjected to the same rigorous tests and inspection as if it were being use with LPG.

5:1 Design factor

Tube:	Black Nitrile
Cover:	Perforated Black Neoprene
Reinforcement:	Multiple textile braids
Temp. Range:	-40° F to +180° F (NOTE: The hose construction is capable of
	this rating, however, LP Gas should NEVER be conveyed over
	140° F during conveyance.)
Branding:	Side 1: PARKER/DAYCO 7232 CGA TYPE I CAUTION - LP GAS
	HOSE MH6737 UR® (UL® Recognized component, with backwards
	"R") ISSUE NO. XXXX 350 PSI MAX WP MADE IN USA Type brand
	Side 2: PARKER/DAYCO LP GAS HOSE
Brand Description:	Emboss Brand and Black letter color, Yellow background

Part No.	ID (in.)	ID (mm)	Reinf. Braids	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
7232-1252	1-1/4	31.8	2	1.815	46.1	85	12.0	350
7232-1252100	1-1/4	31.8	2	1.815	46.1	85	12.0	350
7232-1503K	1-1/2	38.1	3	2.156	54.8	112	14.0	350
7232-2003K	2	50.8	3	2.750	69.9	177	16.0	350

LENGTHS:1-1/4 in. reels are max. 3 pieces, 25 ft. min. length. 1-1/2 in. and 2 in. are
150 ft. pkg., max. 3 pieces with 40 ft. min. length.COUPLINGS:Coupling style 2, 3, 8, or for other coupling recommendations refer to NAHAD

Assembly Guidelines. See Coupling Style Pages in the back of catalog for coupling details.

	Acid & Chemical
	Air & Multi- Purpose
	Fire Suppression
	Food Handling
	Made To Order
3- 7232	Material Handling
CGA T	Petroleum Dispenser
YPE	Petroleum Transport
	Petroleum LP Gas
	Oil Field
	Special Applications
	Steam
	Water
	Welding
	Couplings & Equipment
	Safaty &

Safety & Tech Data

L.P. Gas Hose - U.L. 21 Stainless Steel Series 7231

WARNING! For LP Gas use only! Do not use in anhydrous ammonia or refrigeration applications! Do NOT use male swivel couplings or screw-together re-attachable fittings or any type of couplings that use O-Ring sealing surfaces!

Developed for connections in bulk plant or trucks where piping would be inefficient.

Can be used for natural gas with †application specific criteria. The molecules of natural gas are small, enhancing its ability to permeate through standard rubber or PVC hose constructions. The permeation process is more rapid as the working quences. Use pipe, non-permeable tubing or hose with barrier constructions to convey natural gas. Series 7231 L.P. Gas hose can be used for natural gas service, but ONLY under the following conditions:

† <u>Maximum</u> working pressure of the application not to exceed 50 PSI. The application <u>must</u> be in an outside (non-enclosed) environment. Applications that are in an enclosed environment or greater than 50 PSI working pressure <u>are not recommended</u>.

<u>Do not</u> use LPG hose for fuel hose in vehicles using CNG (Compressed Natural Gas).

In Natural Gas applications, copper, brass, or other copper-containing fittings <u>should be</u> in accordance to the AGA rating of the particular apparatus. The hose used with Natural Gas <u>should be</u> subjected to the same rigorous tests and inspection as if it were being used with LPG.

5:1 Design factor

Tube: Black Nitrile Perforated Black Neoprene Cover: **Reinforcement:** One or multiple stainless steel braids Temp. Range: -40° F to +180° F (NOTE: The hose construction is capable of this rating, however, LP Gas should **NEVER** be conveyed over 140° F during conveyance.) Branding: PARKER/DAYCO 7231 CGA TYPE I CAUTION - LP GAS HOSE MH6737 UR[®] (UL[®] Recognized component, with backwards "R") ISSUE NO. XXXX 350 PSI MAX WP MADE IN USA DE2 (DATE CODE) **Brand Description:** Type Brand - Black letter color, Blue background Annroy Min May

Part No.	ID	ID	Reinf.	OD	OD	Wt. Per	Bend	Rec.
	(in.)	(mm)	Braids	(in.)	(mm)	100 Ft.	Radius	WP
7231-751* 7231-1001 7231-1251 7231-1501K 7231-2002K	3/4 1 1 1/4 1 1/2 2	19.1 25.4 31.8 38.1 50.8	1 1 1 2	1.250 1.500 1.750 2.000 2.625	31.8 38.1 44.5 50.8 66.7	61 78 96 107 177	10.0 12.0 16.5 20.0 25.0	350 350 350 350 350 350

LENGTHS: 3/4 in. & 1 in., 200 ft. per carton +/- 10% 4 pc. Max. 25 ft. min. – 1-1/4 in., 100 ft. per carton +/- 20 %, 2 pc. Max. 10 ft. min. – 1-1/2 in. & 2 in., 150 ft. per carton, 4 pc. Max. 10 ft. min. lengths in carton.

COUPLINGS: Coupling style 2, 3, 8, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of catalog for coupling details.

LP Gas Hose U.L. 569, CGA Type I Series 7170

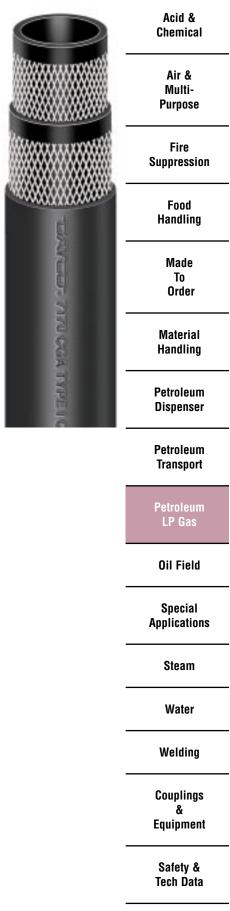
WARNING! For LP and †Natural Gas use only! Do not use in anhydrous ammonia or refrigeration applications! Do NOT use male swivel couplings or screw-together re-attachable fittings or any type of couplings that use O-Ring sealing surfaces!

This hose is intended for use in the assembly of flexible hose connectors for conveyance of LP Gas products for use on barbecue grills, portable heaters, weed burning apparatus and similar applications. Meets or exceeds all Underwriter Laboratories (UL) 569 requirements, as well as the CGA (Canadian Gas Association) Type 1 LP Gas hose requirements.

Can be used for natural gas with †application specific criteria. The molecules of natural gas are small, enhancing its ability to permeate through standard rubber or PVC hose constructions. The permeation process is more rapid as the working pressure increases and natural gas accumulates with potentially dangerous consequences. Use pipe, non-permeable tubing or hose with barrier constructions to convey natural gas. Series 7170 L.P. Gas hose can be used for natural gas service, but ONLY under the following conditions:

† <u>Maximum</u> working pressure of the application not to exceed 50 PSI. The application <u>must</u> be in an outside (non-enclosed) environment. Applications that are in an enclosed environment or greater than 50 PSI working pressure <u>are not recommended</u>.

<u>Do not</u> use LPG hose for fuel hose in vehicles using CNG (Compressed Natural Gas).


In Natural Gas applications, copper, brass, or other copper-containing fittings <u>should be</u> in accordance to the AGA rating of the particular apparatus. The hose used with Natural Gas <u>should be</u> subjected to the same rigorous tests and inspection as if it were being used with LPG.

5:1 Design factor

Tube: Cover: Reinforcem Temp. Rang Branding: Brand Desc	je:	-40° F to +180° F NOTE: The hose construction is capable of this rating, however, LP Gas should NEVER be conveyed above 140° F) PARKER/DAYCO 7170 CGA TYPE 1 CAUTION - LP GAS HOSE 5 PSI / 350 PSI UR® (UL® Recognized component with backwards "R") MH11955 MADE IN USA (DATE CODE) tion: Impression Brand							
Part No.	ID (in.)	ID (mm)	Reinf. Spirals	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Bend	Max. Rec. WP Vapor/Liquid	
7170-25354 7170-31354* 7170-38354	1/4 5/16 3/8	6.4 7.9 9.5	4 4 4	0.590 0.690 0.750	15.0 17.5 19.1	11 17 20	2.5 3.0 3.5	5 / 350 5 / 350 5 / 350	
7170-38354 $3/8$ 9.5 4 0.750 19.1 20 3.5 $5/350$ LENGTHS: Exact length reels, 90% 1 piece, 10% 2 piece, 50 ft. min. length. Reel footage tolerance is +50 ft./-0 ft1/4 in. = 700 ft., 5/16 in. = 650 ft., $3/8$ in. = 550'. UPS shippable "E" reels are 1/4 in. = 350 ft., $3/8$ in. = 300 ft., both are +/-50 ft.									

COUPLINGS: Coupling style 8, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

*Non-Stock

81

Petroleum - LP Gas

DAYCO: SERIES 7122 LPG VAPOR

LP Gas Vapor Hose Series 7122

for coupling details.

This product is designed for use as a light duty, low pressure LP vapor transfer hose. It is recommended for applications such as space heaters used in chicken brooders and other farm and industrial applications. Must be used in an outside or open environment. 4:1 Design factor

CAUTION: This hose should never exceed 125 PSI internal working pressure. This hose was designed for LP GAS - VAPOR ONLY type service. Not to be used for liquid LPG or barbecue grills - not UL listed.

Tube: Cover: Reinforcement: Temp. Range: Branding: Brand Descript		Black Nitrile Red Neoprene, pin pricked Multiple Textile Spirals -20° F to +160° F PARKER/DAYCO SERIES 7122 LPG VAPOR HOSE 125 PSI MAX WP MADE IN USA DE1 (DATE CODE) Ink Brand - Black letter color						
Part No.	ID (in.)	ID (mm)	Reinf. Spirals	OD (in)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
7122-38200	3/8	9.5	2	0.656	16.7	14.9	3.8	125
LENGTHS:	Exact 650 ft. reels, +50 ft./-0 ft. 90% 1 piece, 10% 2 piece, 50 ft. minimum length Coupling style 5, 8, or for other coupling recommendations refer to NAHAE							
		Assembly Guidelines. See Coupling Style Pages in the back of the catalog						

L.P. Gas Hose - UL 21 - Stainless Steel Series 7233 - Rubber Cover Series 7243 - Textile Cover

WARNING! For LP and †Natural Gas use only! Do not use in anhydrous ammonia or refrigeration applications! Do NOT use male swivel couplings, or any type of couplings that use O-Ring sealing surfaces!

Developed for applications wherever a strong, corrosion resistant LP Gas hose is desired. The special low extract tube handles propane or butane in liquid and gas form.

Can be used for natural gas with †application specific criteria. The molecules of natural gas are small, enhancing its ability to permeate through standard rubber or PVC hose constructions. The permeation process is more rapid as the working pressure increases and natural gas accumulates with potentially dangerous consequences. Use pipe, non-permeable tubing or hose with barrier constructions to convey natural gas. Series 7233/7243 L.P. Gas hose can be used for natural gas service, but ONLY under the following conditions:

† <u>Maximum</u> working pressure of the application not to exceed 50 PSI. The application <u>must</u> be in an outside (non-enclosed) environment. Applications that are in an enclosed environment or greater than 50 PSI working pressure <u>are not recommended</u>.

<u>Do not</u> use LPG hose for fuel hose in vehicles using CNG (Compressed Natural Gas).

In Natural Gas applications, copper, brass, or other copper-containing fittings <u>should be</u> in accordance to the AGA rating of the particular apparatus. The hose used with Natural Gas <u>should be</u> subjected to the same rigorous tests and inspection as if it were being used with LPG.

5:1 Design factor

Tube: Cover: Reinforcemen Temp. Range: Branding: Brand Descrip		Perfor One s -40° F Howe during PARK UL® IS DE2- MIN E	Black Nitrile Perforated Black Neoprene or rubber impregnated textile braid One stainless steel braid -40° F to +180° F (NOTE: Hose is capable of this rating. However, LPG should NEVER be elevated above 140° F during conveyance.) PARKER/DAYCO USA 7233 SS LP GAS HOSE MH6737 UL® ISSUE NO. XXX 350 PSI MAX WP (DATE CODE) DE2- CAUTION- FOR LP GAS USE ONLY - 1750 PSI MIN BURST Ink Brand - White letter color							
Part No.	ID (in.)	ID (mm)	Approx. Min. Max. ID Reinf. OD OD Wt. Per Bend Rec.							
Rubber Cover 7233-311	5/16	79	1	0.675	17.1	19	4.0	350		
	AVAILABILITY: Stock LENGTHS: Random lengths on nominal 500 ft. reels, max. 5 pieces per reel, 25 ft. minimum length.									
Part No.	ID (in.)	ID (mm)	Reinf. Layers	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP		
Textile Cover 7243-251025*	1/4	6.4	1	0.581	14.8	15	1.7	350		

7243-251025*	1/4	6.4	1	0.581	14.8	15	1.7	350
7243-311	5/16	7.9	1	0.675	17.1	19	2.0	350
7243-401*	13/32	10.3	1	0.766	19.5	23	2.3	350
7243-501025*	1/2	12.7	1	0.922	23.4	29	l 2.8	350

AVAILABILITY: Stock; *non-stock. 5000 ft. MOQ

LENGTHS: Random lengths on nominal 450 ft. reels, max. 5 pieces per reel, 25 ft. minimum length.
 COUPLINGS: Coupling style 8, Parker/Dayco series BN, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

	Acid & Chemical
	Air & Multi- Purpose
	Fire Suppression
	Food Handling
	Made To Order
	Material Handling
	Petroleum Dispenser
	Petroleum Transport
	Petroleum LP Gas
	Oil Field
	Special Applications
	Steam
	Water

Welding

Couplings & Equipment

> Safety & Tech Data

Petroleum – LP Gas

Oil Field

	page	series
BS & W [™] Oilfield Suction Hose - Smooth Cover	. 84	. 7208
BS & W [™] Oilfield Suction Hose - Corrugated Cover	. 85	. 7213
WILDCATTER [®] Hose	. 85	. 7234
WILDCATTER [®] Hot Oiler Hose	. 86	. 7301
MPW - 1000 [®] Multi-Purpose Hose	. 86	. 7204

Oil Field

BS & W[™] Oilfield Suction Hose

Series 7208 - Smooth Cover

CAUTION: Not to be used for Refined Petroleum Products

An economical, lightweight, and flexible hose designed for the transfer of crude oil and brine water. Specially designed for oilfield waste pit recovery service. Smooth cover.

Tube: Cover: Reinforcement: Temp. Range: Branding:

Special black synthetic rubber compound Special black synthetic rubber compound Textile plies with helix wire -30° F to +180° F PARKER/DAYCO SERIES 7208 BS&W OIL FIELD SUCTION HOSE NOT FOR REFINED FUELS MADE IN USA 001 Tape Brand - White letters on Blue stripe

Brand Description: 4:1 Design factor

Part No.	ID (in.)	ID (mm)	Reinf. Plies	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
7208-1000	1	25.4	2	1.408	35.8	48	2.0	150
7208-1250	1 1/4	31.8	2	1.688	42.9	67	3.0	150
7208-1500	1 1/2	38.1	2	2.000	50.8	98	4.0	150
7208-2000	2	50.8	2	2.512	63.8	125	6.0	150
7208-2500	2 1/2	63.5	2	3.000	76.2	155	9.0	150
7208-3000	3	76.2	2	3.512	89.2	195	12.0	150
7208-4000	4	102.0	2	4.552	115.6	260	16.0	150
7208-6000	6	152.4	4	6.716	170.6	515	48.0	150

LENGTHS: COUPLINGS:

DAYCO: SERIES 7208 BS&W OIL FIELD SUC

100 ft. - Lengths up to 200 ft. available on request.

Coupling style 6, 7, 10, 11 or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details. WARNING! Combination nipple with bands reduces the working pressure of the assembly which is less then the

hose's max working pressure. Refer to NAHAD Assembly Guidelines for working pressure.

BS & W[™] Oilfield Suction Hose

Series 7213 - Corrugated Cover

CAUTION: Not to be used for Refined Petroleum Products

An economical, lightweight and flexible hose designed for the transfer of crude oil and brine water. Specially designed for oilfield waste pit recovery service. Corrugated for flexibility. 4:1 Design factor

Tube: Special Black Synthetic Rubber compound Cover: Special Black Synthetic Rubber compound Textile plies with helix wire **Reinforcement:** Temp. Range: -30° F to +180° F PARKER/DAYCO SERIES 7213 BS&W OIL FIELD Branding: SUCTION HOSE NOT FOR REFINED FUELS MADE IN USA 001 Tape Brand - White letters on Blue stripe

Brand Description:

Part No.	ID (in.)	ID (mm)	Reinf. Plies	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
7213-1500	1 1/2	38.1	2	1.976	50.2	86	4.0	150
7213-2000	2	50.8	3	2.520	64.0	121	6.0	150
7213-2500	2 1/2	63.5	3	3.020	76.7	147	9.0	150
7213-3000	3	76.2	3	3.520	89.4	174	12.0	150
7213-4000	4	101.6	3	4.568	116.0	258	16.0	150
7213-6000	6	152.4	5	6.748	171.4	474	48.0	150

LENGTHS: COUPLINGS: 100 ft. - Lengths up to 200 ft. available on request.

Coupling style 6, 7, 10, 11 or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

WARNING! Combination nipple with bands reduces the working pressure of the assembly which is less then the hose's max working pressure. Refer to NAHAD Assembly Guidelines fo working pressure.

WILDCATTER[®] Slim Hole Rotary Drill Hose Series 7234

Designed for rotary service on portable drilling units, workover rigs and seismograph equipment. This tough, flexible and versatile hose can also be used as a discharge hose for reverse circulation, acidizer and cement solution. Meets API-7 requirements. 2-1/2:1 Minimum Design factor

Tube:	Black Neoprene
Cover:	Black Hypalon with blue stripe
Reinforcement:	Multiple wire spirals
Temp. Range:	-40° F to +200° F
Branding:	PARKER/DAYCO USA WILDCATTER® 3000 PSI WP 001
Brand Description:	Tape Brand - Black letter color, Blue background

Part No.	ID (in.)		Reinf. Spirals			Approx. Wt. Per 100 Ft.	Bend	Max. Rec. WP
7234-2002	2	50.8	4	2.687	68.2	330	18.0	3000

LENGTHS: 50 ft. and 100 ft.

COUPLINGS: Coupling stlye 8, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Couplings Style Pages in the back of the catalog for coupling details.

2

d

SERIES

213

BS

il Fielo

WILDCATTER[®] Hot Oiler Hose

Series 7301

A unique hot oiler hose specially designed for transferring hot oil at 275° F continuous, 300° F intermittent. The rugged neoprene cover is abrasion and gouge resistant. 3:1 Design factor

Black Nitrile Tube: Cover: **Black Neoprene Reinforcement:** Multiple wire braids Temp. Range: -40° F to +275° /300° F Branding: PARKER/DAYCO USA 7301 WILDCATTER HOT OILER HOSE 1-1/2 ID 2250 PSI MAX WP TEMP RATING 275° F CONTINUOUS 300° F INTERMITTENT 001 **Brand Description:** Tape Brand - Red letter color Approx Min Max

Part No.						Wt. Per 100 Ft.	Bend	Rec.
7301-1502	1 1/2	38.1	2	2.000	50.8	159	13.0	2250

LENGTHS: 49 ft. and 50 ft.

COUPLINGS: Coupling style 8, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

MPW - 1000[®] Multi-Purpose Hose Series 7204

This versatile multi-purpose hose is ideal for rugged service in many industrial and high pressure steam cleaning applications. In addition to air and water service, the oil resistant tube and cover will handle a variety of acids and chemicals. Suitable for saturated steam service to 150 PSI and temperatures to 368° F. Also suitable to convey hot tar, wax and glue at 300° F continuous, 350° F intermittent. 4:1 Design factor (10:1 for 150 PSI steam applications)

Tube:

Cover:

Black Nitrile Perforated Black Neoprene **Reinforcement:** One wire braid -20° F to +300°/350°/368° F (steam) Temp. Range: PARKER/DAYCO 7204 - MPW 1000 PSI MAX WP Branding: (DATE CODE) MADE IN USA **Brand Description:** Embossed Brand

Part No.	ID (in.)	ID (mm)	Reinf. Layers	OD (in.)	OD (mm)	Wt. Per 100 Ft.	Bend Radius		Steam WP
7204-381 7204-501 7204-751 7204-1001	3/8 1/2 3/4 1	9.5 12.7 19.1 25.4	2 2	0.781 0.906 1.187 1.500	23.0 30.1	28 34 52 75	5.0 7.0 9.5 12.0	1000 1000 1000 1000	150 150 150 150

LENGTHS: Random lengths on reels. Max. 600 ft., min. 400 ft. 5 pieces max. per reel with 50 ft. length.

COUPLINGS: Coupling style 2, 3, 8, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

Special Applications

	page	series
Paint Fluid Hose - Nylon Tube	90	. 7108
Signal Call Tubing		
Conduit Hose - Reinforced - US MSHA		
Conduit Hose - Non-Reinforced - US MSHA	92	. 7338

Due to continual product improvements, Parker/Dayco reserves the right to alter specifications without prior notice.

Paint Fluid Hose Nylon Tube Series 7108

Designed to handle both water and oil based paints in medium pressure applications. The Nylon 6 tube will handle ketone solvents, lacquers, thinners and paints with high aromatics, as well as many chemicals. Very flexible for ease of handling. 4:1 Design factor

WARNING! Do not use in high pressure paint spray applications requiring a statically conductive hose.

Tube: Cover: Reinforcement: Temp. Range: Branding:	Nylon 6/6.6 Black Neoprene Multiple textile spirals 0° F to +200° F PARKER/DAYCO SERIES 7108 PAINT FLUID HOSE 3/8 ID (9.5 MM) XXX PSI MAX WP MADE IN USA
Brand Description:	(DATE CODE) Ink Brand - White letter color

Part No.	ID (in.)	ID (mm)	Reinf. Spirals	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
7108-251 7108-381 7108-501	1/4 3/8 1/2	6.4 9.5 12.7	2 2 2	0.488 0.680 0.875	12.4 17.3 22.2	9 16 25	3.0 4.0 5.0	500 500 750
LENGTHS:		Random lengths on nominal 500 ft. reels, 3 piece max., 50 ft. minimum length.						
COUPLINGS:	Coupl	Coupling style 2, 3, 8, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages						

in the back of the catalog for coupling details.

Signal Call Tubing

Specially compounded extruded tubing allows use where grease, oil, gasoline and most acids are found. Resists puncturing from snow tire studs. Remains flexible in subzero temperatures.

Material: Reinforceme Temp. Range Branding:		EPDM None -40° F to None) +180° F				
Part No.	ID (in.)	ID (mm)	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
39521	3/8	9.5	0.625	15.9	13	3.0	25
LENGTHS: COUPLINGS	: Coupl refer t	500 ft. per reel, 90% 1 piece, 10% 2 piece, 50 ft. minimum length Coupling style 5, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.					

CO- SERIES 7108 PAINT FLUI

Conduit Hose - Reinforced - US MSHA Series 7337

LENGTHS:

COUPLINGS:

None required

Designed for use as cable cover on underground mining equipment. Meets US MSHA standards for flame resistance and wall thickness and is embossed with US MSHA legend.

Tube: Cover: Reinforcement: Temp. Range: Branding:	Black Synthetic Rubber Black Synthetic Rubber Multiple textile plies -30° F to +180° F PARKER/DAYCO SERIES 7337 PREMIUM CONDUIT HOSE FLAME RESISTANT MINE CONDUIT MSHA NO. 2G-2/10 MADE IN USA
Brand Description:	Embossed Brand

Part No.	ID (in.)	ID (mm)	Reinf. Plies	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.
7337-382	3/8	9.5	2	0.807	20.5	25
7337-502	1/2	12.7	2	0.934	23.7	31
7337-632	5/8	15.9	2	1.063	27.0	37
7337-752	3/4	19.1	2	1.181	30.0	41
7337-872	7/8	22.2	2	1.308	33.2	47
7337-1002	1	25.4	2	1.434	36.4	52
7337-1132	1 1/8	28.6	2	1.560	39.6	58
7337-1252	1 1/4	31.8	2	1.686	42.8	64
7337-1382	1 3/8	34.9	2	1.811	46.0	69
7337-1502	1 1/2	38.1	2	1.929	49.0	73
7337-1752	1 3/4	44.5	2	2.183	55.4	85
7337-1882	1 7/8	47.6	2	2.308	58.6	90
7337-2002	2	50.8	2	2.435	61.8	96
7337-2252	2 1/4	57.2	2	2.687	68.2	107
7337-2382	2 3/8	60.3	2	2.809	71.3	112
7337-2502	2 1/2	63.5	2	2.933	74.5	117
7337-3002	3	76.2	2	3.435	87.2	139
7337-3502	3 1/2	90.0	2	3.976	101.0	162
7337-4002	4	102.0	2	4.449	113.0	182
7337-5002	5	127.0	2	5.433	138.0	225
7337-6002	6	152.4	2	6.437	163.5	271

50 ft. Some ID sizes may also be stocked in 100 ft. or 200 ft. lengths.

Oil Field

Special Applications
Steam
Water
Welding
Couplings & Equipment
Safety & Tech Data
Chemical Charts

91

Conduit Hose - Non-Reinforced - US MSHA Series 7338

Designed for use as cable cover on underground mining equipment. Meets US MSHA standards for flame resistance and wall thickness and is embossed with US MSHA legend

Construction: Minimum 3/16 in. thick Black Synthetic Rubber tubing Temp. Range: -30° F to +180° F PARKER/DAYCO SERIES 7338 PREMIUM CONDUIT Branding: HOSE FLAME RESISTANT MINE CONDUIT MSHA NO. 2G-57/4 MADE IN USA (USMSHA number may vary)

Brand Desc

ription:	Embossed Brand

Part No.	ID (in.)	ID (mm)	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.
7338-380	3/8	9.5	0.800	20.3	26
7338-500	1/2 5/8	12.7 15.9	0.926 1.056	23.5 26.8	32
7338-630		19.1	1.056	20.8 29.8	38
7338-750 7338-870	3/4 7/8	22.2	1.174	29.0	43 48
7338-1000	1	25.4	1.299	36.2	54
	1 1/8	25.4 28.6	1.420	30.2 39.4	-
7338-1130					59
7338-1250	1 1/4	31.8	1.678	42.6	65
7338-1380	1 3/8	34.9	1.805	45.8	71
7338-1500	1 1/2	38.1	1.923	48.8	76
7338-1750	1 3/4	44.5	2.175	55.2	87
7338-2000	2	50.8	2.427	61.6	98
7338-2250	2 1/4	57.2	2.679	68.0	110
7338-2380	2 3/8	60.3	2.801	71.1	115
7338-2500	2 1/2	63.5	2.927	74.3	121
7338-3000	3	76.2	3.428	87.1	143

LENGTHS:

50 ft., many sizes also stocked in 100 ft. and 200 ft. lengths **COUPLINGS:** None required

EXAMPLES 7338 PREMIUM CONDUIT

	page	series
STEAM-LANCE® 250 Steam Hose	. 94	. 7263, 7264
DRAGON BREATH® Butyl Steam Hose	. 95	. 7286
DRAGON BREATH® 250 Steam Hose	. 96	. 7288, 7289
STEAM-LANCE® 150 Steam Cleaner Hose	. 97	. 7250
MPW - 1000 [®] Multi-Purpose Hose	. 98	. 7204

Steam

STEAM - LANCE[®] 250 Steam Hose Series 7263 - BLACK COVER Series 7264 - RED COVER

WARNING! Water changes to hot water and phases of steam when subjected to heat and pressure. The greater the pressure, the higher the temperature required to achieve, maintain a steam phase. If the steam escapes, dangerous quantities of heat are released very suddenly. Hot water, low pressure steam, and high pressure steam can cause severe scalding or fatal burns.

USE ONLY STEAM HOSES DESIGNED FOR STEAM APPLICATIONS.

Warning! Failure to properly use, maintain, test and inspect steam hose assemblies can result in injury to personnel or damage to property.

Designed for saturated steam applications at pressures to 250 PSI and temperatures to 406° F. This hose will also handle super heated steam to 250 PSI and 450° F. The steel wire braids provide maximum strength and can be utilized as a static wire to make the hose assembly electrically conductive. **Not for use with detergents.** 10:1 Design factor (2500 PSI minimum burst) for steam applications.

Tube: Cover: Reinforcement: Temp. Range: Branding:

Brand Description:

Black EPDM Perforated Black or Red EPDM Multiple wire braids -20° F to + 406°/450° F PARKER/DAYCO 7263 STEAM LANCE® 250 PSI MAX WP MADE IN USA DE2 (DATE CODE) Emboss Brand

Part No.	ID (in.)	ID (mm)	Reinf. Braids	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
-502	1/2	12.7	2	1.031	26.2	48	7.0	250
-752	3/4	19.1	2	1.343	34.1	66	9.5	250
-1002	1	25.4	2	1.593	40.5	82	12.0	250
-1252	1 1/4	31.8	2	1.875	47.6	115	16.5	250
-1502	1 1/2	38.1	2	2.188	55.6	137	20.0	250
-2002	2	50.8	2	2.687	68.2	178	25.0	250

LENGTHS:

1/2 in. through 1 in. random lengths on reels, +/- 100 ft., 5 piece max., 50 ft. min. length. 1-1/4 in. through 2 in., 50 ft. cut lengths.

COUPLINGS: WARNING! Use ONLY Parker/Dayco recommended hose/coupling combinations for Steam Applications! Coupling style 2, 3, 8, 12, 13, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

DRAGON BREATH® Butyl Steam Hose Series 7286 - BLACK COVER Series 7287 - RED COVER

WARNING! Water changes to hot water and phases of steam when subjected to heat and pressure. The greater the pressure, the higher the temperature required to achieve, maintain a steam phase. If the steam escapes, dangerous quantities of heat are released very suddenly. Hot water, low pressure steam and high pressure steam can cause severe scalding or fatal burns.

USE ONLY STEAM HOSES DESIGNED FOR STEAM APPLICATIONS.

WARNING! Failure to properly use, maintain, test, and inspect steam hose assemblies can result in injury to personnel or damage to property.

A premium steam hose designed for saturated steam applications at pressures to 250 PSI and temperatures to 406° F. This hose will also handle super heated steam to 250 PSI and 450° F. The steel wire braids provide maximum strength and can be utilized as a static wire to make the hose assembly electrically conductive. Not for use with detergents.

10:1 Design factor

Tube: Cover: **Reinforcement:** Temp. Range: Branding:

-2002

Brand Description:

2

50.8

Black Butvl Perforated Black or Red Butyl Multiple wire braids 0° to +406°/450° F PARKER/DAYCO USA 7286 BUTYL STEAM 250 PSI MAX WP DE2 (DATE CODE) Emboss Brand

68.2

Max.

Rec.

WP

250

250

250 250

250

250

25.0

179

Min. Approx. OD ID OD Wt. Per Bend ID Reinf. 9in.) 100 Ft. Part No. (mm) **Braids** (in.) (mm) Radius -502 1/212.7 1.031 26.2 50 7.0 222222 1.343 9.5 -752 69 3/4 19.1 34.1 25.4 31.8 85 1.594 40.5 -1002 12.0 1 1 1/4 -1252 1.875 47.6 120 16.5 2.188 2.687 -1502 1 1/2 38.1 55.6 137 20.0

LENGTHS: 1/2 in. through 1 in. random lengths on reels, 5 piece max. with 50 ft. min. length. Also 50 ft. and lengths.

COUPLINGS: WARNING! Use ONLY Parker/Dayco recommended hose/coupling combinations for Steam Applications! Coupling style 2, 3, 8, 12, 13, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

Welding

Couplings & Equipment

Safety & **Tech Data**

DRAGON BREATH® 250 Steam Hose

Series 7288 - RED COVER Series 7289 - BLACK COVER (NON-STOCK)

WARNING! Water changes to hot water and phases of steam when subjected to heat and pressure. The greater the pressure, the higher the temperature required to achieve, maintain a steam phase. If the steam escapes, dangerous quantities of heat are released very suddenly. Hot water, low pressure steam and high pressure steam can cause severe scalding or fatal burns.

USE ONLY STEAM HOSES DESIGNED FOR STEAM APPLICATIONS.

WARNING! Failure to properly use, maintain, test and inspect steam hose assemblies can result in injury to personnel or damage to property.

This hose is designed for saturated steam (250 PSI at 406° F)or super heated steam service (250 PSI at 450° F). The double wire braid offers maximum strength and can be utilized as a static wire to make the hose assembly electrically conductive. The oil resistant cover (RMA Class B) makes the hose ideal for refinery service.

10:1 Design factor for steam applications

Tube: Cover: Reinforcement: Temp. Range: Branding:

Brand Description:

Black EPDM Perforated Red Neoprene or Black Hypalon One wire braid -20° F to +406°/450° F PARKER/DAYCO USA 7288 DRAGON BREATH® (DATE CODE) DE2 250 PSI MAX WP Emboss Brand

Part No.	ID (in.)	ID (mm)	Reinf. Braids	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
-502	1/2	12.7	2	1.031	26.2	52	7.0	250
-752	3/4	19.1	2	1.343	34.1	73	9.5	250
-1002	1	25.4	2	1.594	40.5	90	12.0	250
-1252	1 1/4	31.8	2	1.875	47.6	124	16.5	250
-1502	1 1/2	38.1	2	2.187	55.5	144	20.0	250
-2002	2	50.8	2	2.688	68.3	188	25.0	250

LENGTHS: COUPLINGS:

 S: 1/2 in. through 1 in., random lengths on reels, 50 ft. lengths.
 NGS: WARNING! Use ONLY Parker/Dayco recommended hose/coupling combinations for Steam Applications! Coupling style 2, 3, 8, 12, 13, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

STEAM-LANCE[®] 150 Steam Cleaner Hose Series 7250

The hose is designed for tough, constant use in steam cleaning operations in oily environments, and for saturated steam applications. Pressures to 150 PSI and temperatures to 368° F. 10:1 Design factor for steam applications

WARNING! Water changes to hot water and phases of steam when subjected to heat and pressure. The greater the pressure, the higher the temperature required to achieve, maintain a steam phase. If the steam escapes, dangerous quantities of heat are released very suddenly. Hot water, low pressure steam, and high pressure steam can cause severe scalding or fatal burns.

USE ONLY STEAM HOSES DESIGNED FOR STEAM APPLICATIONS.

Warning! Failure to properly use, maintain, test and inspect steam hose assemblies can result in injury to personnel or damage to property.

Tube:Black NitrileCover:Perforated Red NeopreneReinforcement:One wire braidTemp. Range:-20° F to +368° FBranding:PARKER/DAYCO USA 7250 STEAM LANCE® (DATE CODE)150 PSI MAX WP - DE2Brand Description:Emboss Brand

Part No.	ID (in.)	ID (mm)	Reinf. Braids	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
7250-381	3/8	9.5	1	0.781	19.8	28	5.0	150
7250-501	1/2	12.7	1	0.906	23.0	34	7.0	150
7250-751	3/4	19.1	1	1.187	30.1	51	9.5	150
7250-1001	1	25.4	1	1.500	38.1	75	12.0	150

LENGTHS: Random lengths on nominal 500 ft. reels. Max. 600 ft., min. 400 ft. 5 pieces max. with 50 ft. min. length.

COUPLINGS: WARNING! Use ONLY Parker/Dayco recommended hose/coupling combinations for Steam Applications! Coupling style 2, 3, 8, 12, 13, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

Welding

Couplings & Equipment

Safety & Tech Data

MPW - 1000[®] Multi-Purpose Hose

Series 7204

This versatile multi-purpose hose is ideal for rugged service in many industrial and high pressure steam cleaning applications. In addition to air and water service, the oil resistant tube and cover will handle a variety of acids and chemicals. Suitable for saturated steam service to 150 PSI and temperatures to 368° F. Also suitable to convey hot tar, wax and glue at 300° F continuous, 350° F intermittent. 4:1 Design factor (10:1 for 150 PSI steam applications)

Tube: Cover: Reinforcement: Temp. Range: Branding: Black Nitrile Perforated Black Neoprene One wire braid -20° F to +300°/350°/368° F (steam) PARKER/DAYCO 7204 - MPW 1000 PSI MAX WP (DATE CODE) MADE IN USA Embossed Brand

Brand Description: Èmi

Part No.	ID (in.)	ID (mm)	Reinf. Layers	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP	Max. Steam WP
7204-381 7204-501 7204-751 7204-1001	3/8 1/2 3/4 1	9.5 12.7 19.1 25.4	2 2	0.781 0.906 1.187 1.500	30.1	28 34 52 75	5.0 7.0 9.5 12.0	1000 1000 1000 1000	150 150 150 150

LENGTHS:

Random lengths on reels. Max. 600 ft., min. 400 ft. 5 pieces max. per reel with 50 ft. length.

COUPLINGS: Coupling style 2, 3, 8, 12, 13, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

Water

	page	series
DAY-FLO® Water Suction Hose		
SUPER-FLEX® Water Suction Hose		
SUPER-FLEX [®] Heavy Duty Water Suction Hose		
BS & W [™] Oilfield Suction Hose - Smooth Cover		
BS & W [™] Oilfield Suction Hose - Corrugated Cover		
DYNAFLEX® PVC Standard Duty Suction Hose		
DYNAFLEX® PVC Multi-Purpose Suction Hose		
DAY-FLO® Water Discharge Hose		
DAY-FLO® Ultra Light Water Discharge Hose		
DAY-FLO® Heavy Duty Water Discharge Hose		
DAY-FLO® Medium Duty Water Discharge Hose		
GULLY WASHER® PVC Discharge Hose - Standard Duty - Blue		
GULLY WASHER® PVC Discharge Hose - Medium Duty - Red		
GULLY WASHER® PVC Discharge Hose - Heavy Duty - Yellow		
GULLY WASHER® PVC Discharge Hose - Light Duty - Gray		
STINGER [™] II Mine Air & Water Hose - MSHA	111	7268
YELLOW BIRD® Air & Water Hose - MSHA	111	7284
THORO-BRAID® Air Hose - MSHA		
GRIZZLY [™] 500 Multi-Purpose Hose - MSHA		
MPW - 1000 [®] Multi-Purpose Hose		
PWD High Pressure Washdown Hose	11/	71/2
BLUE RIBBON [®] Pressure Washer Hose		
Pressure Washer Hose		
HYDRO-SPRAY [™] Car Wash Hose		
ECW [™] Economy White Washdown Hose		
HDW [™] Creamery Washdown Hose		
WILDCATTER® Washdown Hose		
GST® II General Service Air & Water Hose		
MPT [®] II Multi-Purpose Air & Water Hose (Non-Conductive)		
SUPER-FLEX® GS General Service Air & Water Hose		
SUPER MPT Hose		
Contractor Water Hose - Rubber		,
THERM-O-BLUE® ORS Hose.		
JIFFY® HOSE Air Hose - MSHA		
JIFFY FLEX 250		
THORO-SPRAY® High Pressure Spray Hose		
DYNAFLEX® PVC Transparent Suction/Discharge Hose.		
HYDRO-AIRE [™] PVC Hose		
Furnace Door Coolant Hose - Softwall		
Furnace Door Coolant Hose - Hardwall	. 130	. 7386

Water

DAY-FLO® Water Suction Hose

Series 7257

This hose is designed for water suction and discharge service. All sizes capable of withstanding full suction. Tube and cover resistant to LASSO[®] and other herbicides, weak alkalis and acids.

4:1 Design factor

Tube: Cover: Reinforcement: Temp. Range: Branding:

Brand Description:

Black EPDM Black EPDM Multiple textile plies with helix wire -30° F to +212° F PARKER/DAYCO SERIES 7257 DAYFLO® WATER SUCTION HOSE 150 PSI MAX WP MADE IN USA Emboss Brand

Part No.	ID (in.)	ID (mm)	Reinf. Plies	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
7257-125150	1 1/4	31.8	2	1.732	44.0	84	7.0	150
7257-150150	1 1/2	38.1	2	1.904	48.4	83	10.0	150
7257-200150	2	50.8	2	2.512	63.8	128	13.0	150
7257-250150	2 1/2	63.5	2	3.028	76.9	168	15.0	150
7257-300150	3	76.2	2	3.527	89.6	197	20.0	150
7257-400150	4	101.6	4	4.574	116.2	279	26.0	150
7257-500100	5	127.0	4	5.670	144.0	448	30.0	100
7257-600070	6	152.4	4	6.819	173.2	627	36.0	70
7257-800070	8	203.2	4	8.905	226.2	962	48.0	70
7257-1000070	10	254.0	4	11.079	281.4	1226	60.0	70
7257-1200070	12	304.8	4	12.788	324.8	1069	72.0	70

LENGTHS: 1-1/4 in. through 6 in., 100 ft., 8 in. through 12 in., 50 ft. Other I.D.s through 20 in. available on quotation, contact Customer Satisfaction Center.

COUPLINGS: Coupling style 2, 3, 7, or for othe coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

WARNING! Combination nipple with bands reduces the working pressure of the assembly to less than the hose's max working pressure. Refer to NAHAD Assembly Guidelines for working pressures.

SUPER-FLEX[®] Water Suction Hose Series 7392

This water suction hose is designed to handle a wide range of applications in industry, construction and agriculture. The tough, flexible EPDM rubber construction will resist abrasion, weathering and the effects of agricultural herbicides and other mild chemicals. Incorporates a steel wire helix in the hose wall for full suction capabilities, as well as high tensile tire cord fabric for discharge pressure. 4:1 Design factor

Tube: Cover: Reinforcement: Temp. Range: Branding:

Brand Description:

Black EPDM Black EPDM Multiple textile plies with helix wire -30° F to +212° F PARKER/DAYCO SERIES 7392 WATER SUCTION & DISCHARGE MADE IN USA Emboss brand

Part No.	ID (in.)	ID (mm)	Reinf. Plies	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
7392-1500	1 1/2	38.1	2	1.904	48.36	83	6.0	150
7392-2000	2	50.8	2	2.449	62.20	117	7.0	150
7392-2500	2 1/2	63.5	2	2.956	75.08	155	8.0	100
7392-3000	3	76.2	2	3.504	89.00	200	10.0	100
7392-4000	4	107.0	2	4.528	115.01	315	14.0	100
7392-5000	5	127.0	2	5.656	143.67	500	22.0	100
7392-6000	6	152.4	4	6.842	173.79	618	30.0	75
7392-8000	8	203.2	4	8.866	225.20	846	38.0	75
7392-10000	10	254.0	4	10.938	277.81	1119	50.0	75
7392-12000	12	304.8	4	13.080	332.23	1510	66.0	75

LENGTHS: 100 ft. sizes through 6 in. ID; 50 ft. sizes 8 in. - 12 in.; 20 ft. also available sizes 6 in. - 12 in. COUPLINGS: Coupling style 2, 3, 7, or for other coupling recommendations

COUPLINGS: Coupling style 2, 3, 7, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details. WARNING! Combination nipple and bands reduces the working pressure of the assembly to less than the hose's max working pressure. Refer to NAHAD Assembly Guidelines for working pressures.

	Acid &
-	Chemical
	Air &
_	Multi- Purpose
~	Fire
	Suppression
1	Easd
	Food Handling
	Made
	To Order
	Material
	Handling
1	
	Petroleum Dispenser
2	Petroleum
	Transport
	Petroleum
	LP Gas
	Oil Field
	Special Applications
	Steam
	Water
	Welding
	Couplings

C

AYCO SERIES 7392 WATER SUCTION

Couplings & Equipment

Safety & Tech Data

CANYCO: SERIES 7325 HD WATER SUC

SUPER-FLEX[®] Heavy Duty Water Suction Hose

Series 7325

This hose is designed for heavy-duty applications requiring endurance and higher pressure ratings. The hose is also designed to make tight bends without kinking. The tough, flexible EPDM synthetic rubber provides resistance to abrasion, weathering and many industrial and agricultural chemicals. 4:1 Design factor

Tube: Cover: Reinforcement: Temp. Range: Branding:

Brand Description:

Black EPDM Black EPDM Textile plies with helix wire -40° F to +212° F PARKER/DAYCO SERIES 7325 HD WATER SUCTION 300 PSI MAX WP MADE IN USA Tape Brand - White letters on Blue stripe.

Part No.	ID (in.)	ID (mm)	Reinf. Plies	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
7325-1500	1 1/2	38.1	4	2.094	53.2	122	6.0	300
7325-2000	2	50.8	4	2.648	67.3	171	8.0	300
7325-2500	2 1/2	63.5	4	3.192	81.1	228	10.0	300
7325-3000	3	76.2	4	3.700	94.0	270	12.0	300

LENGTHS: 100 ft. and 200 ft. lengths. **COUPLINGS:** Coupling style 2, 3, 7, or fo

Coupling style 2, 3, 7, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.
 WARNING! Combination nipple with bands reduces the working pressure of the assembly to less than the hose's max working pressure. Refer to NAHAD Assembly Guidelines

for working pressures.

BS & W[™] Oilfield Suction Hose

Series 7208 - Smooth Cover

CAUTION: Not to be used for Refined Petroleum Products

An economical, lightweight and flexible hose designed for the transfer of crude oil and brine water. Specially designed for oilfield waste pit recovery service. Smooth cover. 4:1 Design factor

Tube: Cover: Reinforcement: Temp. Range: Branding:	Special black synthetic rubber compound Special black synthetic rubber compound Textile plies with helix wire -30° F to +180° F PARKER/DAYCO SERIES 7208 BS&W OILFIELD SUCTION HOSE NOT FOR REFINED FUELS
	SUCTION HOSE NOT FOR REFINED FUELS
	MADE IN USA 001
Brand Description:	Tape Brand - White letters on Blue stripe

Brand Description:

Part No.	ID (in.)	ID (mm)	Reinf. Plies	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
7208-1000	1	25.4	2	1.408	35.8	48	2.0	150
7208-1250	1 1/4	31.8	2	1.688	42.9	67	3.0	150
7208-1500	1 1/2	38.1	2	2.000	50.8	98	4.0	150
7208-2000	2	50.8	2	2.512	63.8	125	6.0	150
7208-2500	2 1/2	63.5	2	3.000	76.2	155	9.0	150
7208-3000	3	76.2	2	3.512	89.2	195	12.0	150
7208-4000	4	102.0	2	4.552	115.6	260	16.0	150
7208-6000	6	152.4	4	6.716	170.6	515	48.0	150

LENGTHS: COUPLINGS:

100 ft. - Lengths up to 200 ft. available on request.

Coupling style 6, 7, 10, 11 or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details. WARNING! Combination nipple with bands reduces the working pressure of the assembly, which is less than the hose's max working pressure. Refer to NAHAD Assembly Guidelines for working pressure.

BS & W[™] Oilfield Suction Hose Series 7213 - Corrugated Cover

CAUTION: Not to be used for Refined Petroleum Products

An economical, lightweight, and flexible hose designed for the transfer of crude oil and brine water. Specially designed for oilfield waste pit recovery service. Corrugated for flexibility.

4:1 Design factor

Tube: Cover: Reinforcement: Temp. Range: Branding:	Special Black Synthetic Rubber compound Special Black Synthetic Rubber compound Textile plies with helix wire -30° F to +180° F PARKER/DAYCO SERIES 7213 BS&W OILFIELD SUCTION HOSE NOT FOR REFINED FUELS
Brand Description:	MADE IN USA 001 Tape Brand - White letters on Blue stripe

Part No.	ID (in.)	ID (mm)	Reinf. Plies	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
7213-1500	1 1/2	38.1	2	1.976	50.2	86	4.0	150
7213-2000	2	50.8	3	2.520	64.0	121	6.0	150
7213-2500	2 1/2	63.5	3	3.020	76.7	147	9.0	150
7213-3000	3	76.2	3	3.520	89.4	174	12.0	150
7213-4000	4	101.6	3	4.568	116.0	258	16.0	150
7213-6000	6	152.4	5	6.748	171.4	474	48.0	150

LENGTHS: COUPLINGS: 100 ft. - Lengths up to 200 ft. available on request.

Coupling style 6, 7, 10, 11 or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details. WARNING! Combination nipple with bands reduces the working pressure of the assembly, which is less than the hose's max working pressure. Refer to NAHAD Assembly Guidelines for working pressure.

	Acid & Chemical
2	Air & Multi- Purpose
ġ	Fire Suppression
ארם א	Food Handling
SERIES 720	Made To Order
B BS&W (Material Handling
W OIL FIELD SL	Petroleum Dispenser
SUCT	Petroleum Transport
	Petroleum LP Gas

DYNAFLEX® PVC Standard Duty Suction Hose Series 7560

This is a flexible hose that will withstand full suction and discharge pressure. It will handle a variety of liquid and solid materials such as water, slurry transfer, sewage, air, chemicals, grains and pellets. A versatile hose for agriculture, mining, construction and industry. 3:1 Design factor

Tube: Cover: **Reinforcement:** Temp. Range:

Green PVC–Smooth Green PVC–Smooth Rigid white PVC helix -5° F to +140° F

Part No.	ID (in.)	OD (mm)	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
7560-750	3/4	19.1	1.050	26.7	20	3.0	120
7560-1000	1	25.4	1.220	31.0	25	4.0	120
7560-1250	1 1/4	31.8	1.500	38.1	32	5.1	120
7560-1500	1 1/2	38.1	1.790	45.5	39	5.9	110
7560-2000	2	50.8	2.300	58.4	57	8.6	95
7560-2500	2 1/2	63.5	2.900	73.7	74	11.4	70
7560-3000	3	76.2	3.350	85.1	99	13.7	60
7560-4000	4	101.6	4.470	113.5	160	18.9	50
7560-6000	6	152.4	6.600	167.6	310	31.5	45
7560-8000	8	203.2	8.800	223.5	523	48.4	35

LENGTHS: COUPLINGS:

100 ft. coils 3/4 in. through 6 in., 30 ft. straight lengths - 8 in. Coupling style 7, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

DYNAFLEX® PVC Multi-Purpose Suction Hose

Series 7561

Extremely lightweight and flexible for general service, low pressure applications. Will handle both full suction and discharge pressure and, smooth bore design allows unrestricted flow. 3:1 Design factor

Tube:
Cover:
Reinforcement:
Temp. Range:

Green PVC-Smooth Green PVC–Corrugated Rigid white PVC spiral helix -5° F to +140° F

Part No.	ID (in.)	ID (mm)	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP/68°F	Max. Rec. WP/ 140°F
7561-1500	1 1/2	38.1	1.790	45.5	33	2.0	80	25
7561-2000	2	50.8	2.300	58.4	46	3.0	65	20
7561-2500	2 1/2	63.5	2.870	72.9	60	5.0	60	20
7561-3000	3	76.2	3.300	83.8	75	7.0	45	15

LENGTHS: 100 ft. coils.

COUPLINGS: Coupling style 7, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

DAY-FLO® Water Discharge Hose

Series 7306

Recommended for water discharge service in heavy-duty industrial applications. The extra heavy wall prolongs service life and endurance in physically demanding applications.

4:1 Design factor

Tube: Cover: Reinforcement: Temp. Range: Branding:	Black EPDM Black EPDM Multiple textile plies -30° F to +212° F PARKER/DAYCO SERIES 7306 DAY-FLO WATER DISCHARGE HOSE MADE IN USA
Brand Description:	Emboss Brand

Part No.	ID (in.)	ID (mm)	Reinf. Plies	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Max. Rec. WP	
7306-150200	1 1/2	38.1	4	2.056	52.2	93	200	
7306-200175	2	50.8	4	2.528	64.2	116	175	
7306-250150	2 1/2	63.5	2	2.988	75.9	132	150	
7306-300125	3	76.2	2	3.536	89.8	173	125	
7306-400100	4	101.6	2	4.534	115.2	223	100	
7306-450085	4 1/2	114.3	2	5.052	128.3	258	85	
7306-500085	5	127.0	2	5.551	141.0	285	85	
7306-600075	6	152.4	2	6.552	166.4	340	75	
7306-800070	8	203.2	4	8.552	217.2	444	70	

LENGTHS: COUPLINGS:

1 1/2 in. - 6 in., 100 ft. 8 in. - 50 ft.

Coupling style 2, 3, 7, or for other coupling recommendations refer to NAHAD Assembly Guideline. See Coupling Style Pages in the back of the catalog for coupling details. WARNING! Combination nipple with bands reduces the

Max

working pressure of the assembly to less than the hose's max working pressure. Refer to NAHAD Assembly Guidelines for working pressures.

	Acid &				
	Chemical				
-					
-	A.: 0				
	Air &				
	Multi-				
100	Purpose				
	Fire				
	Suppression				
	Food				
	Food Handling				
	панинну				
	Made				
	То				
	Order				
	Material				
	Handling				
	Petroleum				
	Dispenser				
	Petroleum				
	Transport				
1000					
	Detroloum				
	Petroleum LP Gas				
	Lr Gas				
	Oil Field				

Special **Applications**

Steam

Water

Welding

Couplings & Equipment

Safety & **Tech Data**

DAY-FLO[®] Ultra Light Water Discharge Hose Series 7306L

This is the lightest rubber water discharge hose available. Remarkably lightweight for easy handling, with the flexibility of a rubber tube and cover. Economical for short term or one-time jobs. Particularly suitable for open-end discharge applications.

3:1 Design factor

Tube: Cover: Reinforcement: Temp. Range: Branding: Black EPDM Black EPDM Multiple textile plies -30° F to +212° F PARKER/DAYCO SERIES 7306L DAY-FLO LIGHT WATER DISCHARGE HOSE 75 PSI MAX WP MADE IN USA Emboss Brand

Brand Description:

Part No.	ID (in.)	ID (mm)	Reinf. Plies	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Max. Rec. WP
7306L-2000	2	50.8	2	2.244	57.00	48	75
7306L-3000	3	76.2	2	3.244	82.40	71	75
7306L-4000	4	102.0	2	4.291	109.0	111	75
7306L-6000	6	152.4	2	6.276	159.41	165	75
7306L-8000	8	203.2	2	8.323	211.40	236	75
7306L-10000	10	254.0	2	10.394	264.00	368	75

LENGTHS: COUPLINGS:

100 ft. except 10 in., which is 50 ft.

SS: Coupling style 2, 3, 7, or for other coupling recommendations refer to NAHAD Assembly Guideline. See Coupling Style Pages in the back of the catalog for coupling details

WARNING! Combination nipple with bands reduces the working pressure of the assembly to less than the hose's max working pressure. Refer to NAHAD Assembly Guidelines for working pressures.

DAY-FLO[®] Heavy Duty Water Discharge Hose Series 7306H

This is the tough one - designed for heavy-duty water discharge applications. The combination of a heavy wall and 200 PSI working pressure rating (150 PSI in 10 in. & 12 in. ID sizes) make this the right hose for applications that need extra capacity and durability.

3:1 Design factor

Tube: Cover: Reinforcement: Temp. Range: Branding:

LENGTHS:

COUPLINGS:

Black EPDM Black EPDM Multiple textile plies -30° F to 212° F PARKER/DAYCO SERIES 7306H DAY-FLO H.D. WATER DISCHARGE HOSE XXX PSI MAX WP MADE IN USA 001 Tape Brand - White letters on Blue stripe.

Brand Description:

Part No.	ID (in.)	ID (mm)	Reinf. Plies	OD. (in.)	OD. (mm)	Wt. Per 100 Ft.	Rec.
7306H-2000	2	50.80	4	2.536	64.41	114	200
7306H-2500	2 1/2	63.50	4	3.050	77.47	148	200
7306H-3000	3	76.20	4	3.550	90.17	175	200
7306H-4000	4	101.60	4	4.556	115.72	231	200
7306H-5000	5	127.00	4	5.582	141.78	298	200
7306H-6000	6	152.40	4	6.646	168.81	358	200
7306H-8000	8	203.20	4	8.646	219.61	472	200
7306H-10000	10	254.00	4	10.646	270.41	585	150
7306H-12000	12	304.80	4	12.788	324.82	878	150

100 ft. except 10 in. and 12 in., which are 50 ft.

back of the catalog for coupling details.

for working pressures.

Coupling style 2, 3, 7, or for other coupling recommendations refer

to NAHAD Assembly Guideline. See Coupling Style Pages in the

max working pressure. Refer to NAHAD Assembly Guidelines

WARNING! Combination nipple with bands reduces the

working pressure of the assembly to less than the hose's

Chemical Air & Multi-Purpose Fire Suppression Food Handling Made То Order Material Handling Petroleum Dispenser Petroleum Transport Petroleum LP Gas **Oil Field**

DAYCO: SERIES 7306H DAY-FLO H.D. WATER

⊒

Annroy

Max

Acid &

Special Applications

Steam

Water

Welding

Couplings & Equipment

Safety & Tech Data

DAY-FLO[®] Medium Duty Water Discharge Hose Series 7306M

Light, flexible and durable with 150 PSI working pressure in all sizes! This hose is the most versatile choice for many water discharge applications. The tube and cover are flexible EPDM rubber, which is resistant to weathering and to many light industrial and agricultural chemicals.

3:1 Design factor

Tube: Cover: Reinforcement: Temp. Range: Branding:

Brand Description:

Black EPDM Black EPDM Textile tire cord plies -30° F to +212° F PARKER/DAYCO SERIES 7306M DAY-FLO MEDIUM WATER DISCHARGE HOSE 150 PSI MAX WP MADE IN USA Emboss Brand

Part No.	ID (in.)	ID (mm)	Reinf. Plies	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Max. Rec. WP
7306M-1500	1 1/2	38.1	2	1.812	46.0	49	150
7306M-2000	2	50.8	2	2.299	58.4	63	150
7306M-2500	2 1/2	63.5	2	2.800	71.1	77	150
7306M-3000	3	76.2	2	3.322	84.4	99	150
7306M-4000	4	102.0	2	4.362	110.8	131	150
7306M-5000	5	127.0	2	5.440	138.2	212	150
7306M-6000	6	152.4	2	6.488	164.8	284	150
7306M-8000	8	203.2	4	8.543	217.0	409	150
7306M-10000	10	254.0	4	10.535	267.6	522	150
7306M-12000	12	304.8	4	12.575	319.4	620	150

LENGTHS:

100 ft. except 10 in. & 12 in. which are 50 ft., 2 in., 3 in. & 4 in. also stocked in 200 ft., add 200 to the part number above.

COUPLINGS:

Coupling style 2, 3, 7, or for other coupling recommendations refer to NAHAD Assembly Guideline. See Coupling Style Pages in the back of the catalog for coupling details. WARNING! Combination nipple with bands reduces the

working pressure of the assembly to less than the hose's max working pressure. Refer to NAHAD Assembly Guidelines for working pressures.

GULLY WASHER® PVC Discharge Hose

Series 7541 - Standard Duty - BLUE COVER

Designed as standard duty hose for water discharge in agriculture, mining, construction and other industrial applications. Strong, economical, lightweight hose, which rolls up flat for easy storage. 3:1 Design factor

Tube: Cover: **Reinforcement:** Temp. Range: Branding:

Blue PVC Blue PVC Two spiral plies, one longitudinal ply -10° F to +150° F None

Part No.	Nom. Size	ID (in.)	ID (mm)	Reinf. Plies	Approx. Wt. Per 100 Ft.	Max. Rec. WP
7541-1501 7541-2001 7541-2501 7541-3001 7541-4001	1 1/2 2 1 1/2 3 4	1.570 2.090 2.550 3.070 4.090	39.9 53.1 64.8 78.0 103.9	3 3 3 3 3 3	14 18 22 26 40	70 70 60 55 45
7541-6001 7541-8001	6 8	6.100 8.100	154.9 205.7	3 3	70 110	40 40

LENGTHS: 300 ft. bales. COUPLINGS:

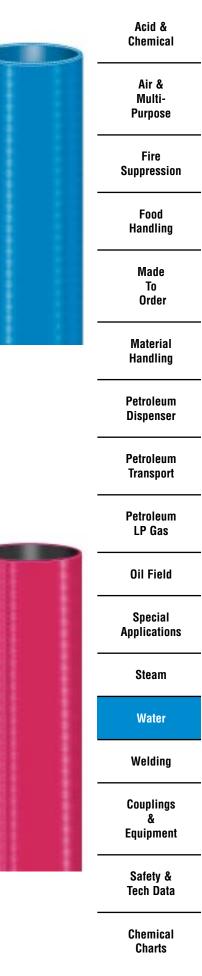
Coupling style 7, or for other coupling recommendations refer to NAHAD Assembly Guideline. See Coupling Style Pages in the back of the catalog for coupling details.

WARNING! Combination nipple with bands reduces the working pressure of the assembly to less than the hose's max working pressure. Refer to NAHAD Assembly Guidelines for working pressures.

GULLY WASHER® PVC Discharge Hose Series 7542 - Medium Duty - RED COVER

This PVC hose is designed for medium duty water discharge applications in construction, agriculture, general industry and mining. The abrasion resistant PVC cover and PVC/Nitrile tube provide long service life. Rolls up flat for easy storage. 3:1 Design factor

Tube:	Black PVC/Nitrile
Cover:	Red PVC
Reinforcement:	Multiple textile plies
Temp. Range:	-10° F to +150° F
Branding:	FLAME RESISTANT USMSHA 2G-60/1
Brand Description:	Ink Brand - White letter color


Part No.	Nom. Size (in.)	ID (in.)	ID (mm)	Reinf. Plies	Approx. Wt. Per 100 Ft.	Max. Rec. WP
7542-1501	1 1/2	1.570	39.9	2 2 2 2	21	120
7542-2001	2	2.090	53.1		30	120
7542-2501	2 1/2	2.510	63.8		39	120
7542-3001	3	3.070	78.0	2	50	120
7542-4001	4	4.090	103.9	2	74	120
7542-6001	6	6.070	154.2	2	117	100

LENGTHS: COUPLINGS:

300 ft. bales.

Coupling style 7, or for other coupling recommendations refer to NAHAD Assembly Guideline. See Coupling Style Pages in the back of the catalog for coupling details.

WARNING! Combination nipple with bands reduces the working pressure of the assembly to less than the hose's max working pressure. Refer to NAHAD Assembly Guidelines for working pressures.

Water

GULLY WASHER[®] PVC Discharge Hose Series 7545 - Heavy Duty - YELLOW COVER

This hose is designed for heavy duty water discharge service in applications such as agriculture, construction, industry and mining. Abrasion resistant PVC cover, the PVC/Nitrile tube and high adhesions between the layers provide for a long service life. Rolls up flat for easy storage. MSHA brand. 3:1 Design factor

Tube:Black PVC/NitrileCover:Yellow PVC - smoothReinforcement:Multiple textile pliesTemp. Range:-10° F to +150° FBranding:FLAME RESISTANT USMSHA 2G-60/1Brand Description:Ink Brand - Black letter color

Part No.	Nom. Size (in.)	ID (in.)	ID (mm)	Reinf. Plies	Approx. Wt. Per 100 Ft.	Max. Rec. WP
7545-1501	1 1/2	1.570	39.9	2	32	230
7545-2001	2	2.090	53.1	2	43	230
7545-2501	2 1/2	2.590	65.8	2	56	230
7545-3001	3	3.070	78.0	2	67	170
7545-4001	4	4.090	103.9	2	98	160
7545-6001	6	6.070	154.2	2	168	105

LENGTHS: 300 ft. bales. COUPLINGS: Coupling style

Coupling style 7, or for other coupling recommendations refer to NAHAD Assembly Guideline. See Coupling Style Pages in the back of the catalog for coupling details. WARNING! Combination nipple with bands reduces the working pressure of the assembly to less than the hose's max working pressure. Refer to NAHAD Assembly Guidelines for working pressures.

GULLY WASHER[®] PVC Discharge Hose Series 7547 - Light Duty - Contractors Gray Cover

Designed for light duty discharge service in applications such as construction, agriculture, consumer home use, general industry and mining. Abrasion resistant PVC cover combined with a PVC/Nitrile tube provide long service life. Rolls up flat for easy storage.

3:1 Design factor

Tube: Cover: Reinforcement: Temp. Range: Branding: Black PVC/Nitrile Gray PVC Multiple textile plies -10° F to +150° F None

Part No.	Nom. Size (in.)	ID (in.)	ID (mm)	Reinf. Plies	Approx. Wt. Per 100 Ft.	Max. Rec. WP
7547-1501 7547-2001 7547-2501	1 1/2 2 2 1/2	1.510 2.040 2.510	38.4 51.8 63.8	2 2 2	18 24 29	70 60 60
7547-2501 7547-3001 7547-4001 7547-6001	2 1/2 3 4 6	3.070 4.090 6.070	78.0 103.9 154.2	2 2 2 2	29 37 53 82	50 50 45 35

LENGTHS: 300 ft. bales. COUPLINGS: Coupling style

Coupling style 7, or for other coupling recommendations refer to NAHAD Assembly Guideline. See Coupling Style Pages in the back of the catalog for coupling details. WARNING! Combination nipple with bands reduces the working pressure of the assembly to less than the hose's max working pressure. Refer to NAHAD Assembly Guidelines for working pressures.

FLAME RESISTANT USMSHA 2G-60/1

STINGER[™] II Mine Air & Water Hose – MSHA Series 7268

Stinger II hose is a very durable hose manufactured to handle the severe service requirements of underground mine spray service. The bright yellow MSHA cover is flame, oil, and abrasion resistant. This hose is also an excellent choice for high pressure air and washdown service. 4:1 Design factor (2 in. - 3.5:1)

Tube:	Black Neoprene
Cover:	Yellow NBR/PVC
Reinforcement:	Wire braid
Temp. Range:	-20° F to +180° F
Branding:	PARKER/DAYCO USA 7268 STINGER II [™] 3/4 ID 1000
-	PSI MAX WP MSHA IC-123/17 DE2 (DATE CODE)
Brand Description:	Ink Brand - Black letter color

Part No.	ID (in.)	ID (mm)	Reinf. Braids	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
7268-751	3/4	19.1	1	1.045	26.5	36	6.0	1000
7268-1001	1	25.4	l i	1.339	34.0	53	8.0	1000
7268-1251	1 1/4	31.8	1	1.631	41.4	66	12.0	1000
7268-1501	1 1/2	38.1	1	1.890	48.0	86	14.0	1000
7268-2001	2	50.8	1	2.440	62.0	141	18.0	1000

LENGTHS:

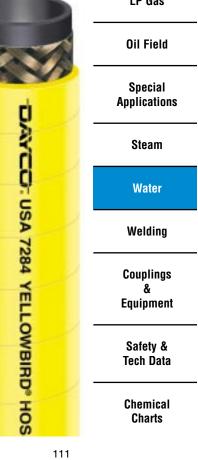
3/4 in. and 1 in. - 500 ft. reels, 5 pieces max. 50 ft. multiples, 50 ft. min. length. 1-1/4 in., 1-1/2 in. and 2 in., specified 50 ft. & 100 ft. lengths and random lengths. Other lengths on quotation.

COUPLINGS: Coupling style 8, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

YELLOW BIRD[®] Air & Water Hose – MSHA Series 7284

YELLOW BIRD® hose is designed for high pressure water service in underground mines. The SBR tube, wire braided construction, and nitrile/PVC cover also makes it an excellent high pressure air or general purpose hose. The flame resistant yellow cover is branded with the MSHA legend.

4:1 Design factor


Tube: Cover: Reinforcement: Temp. Range: Branding:	Black SBR Yellow NBR/PVC, PIN-PRICKED One or multiple wire braids -20° F to +180° F PARKER/DAYCO USA 7284 YELLOW BIRD® HOSE (DATE CODE) DE2 XXXX PSI MAX WP MSHA IC-123/17 - FLAME RESISTANT
Brand Description:	Ink Brand - Black letter color

Part No.	ID (in.)	ID (mm)	Reinf. Braids	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
7284-381	3/8	9.5	1	0.688	17.5	25	6.0	1500
7284-501	1/2	12.7	1	0.969	24.6	37	7.0	1000
7284-751	3/4	19.1	1	1.219	31.0	56	9.5	1000
7284-1001	1	25.4	1	1.469	37.3	69	12.0	1000
7284-1252	1 1/4	31.8	2	1.719	43.7	90	15.5	1000

LENGTHS: Random lengths on reels. 3/8 in. is 400 ft., 3 pc. max., 10 ft. min. length – 1/2 in. is 425 ft., 5 pc. max., 50 ft. min. – 3/4 in. & 1 in. is 500 ft., 5 pc. max., 50 ft. min.

COUPLINGS: Coupling style 8, or for other recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling detials.

THORO-BRAID® Air Hose - MSHA

Series 7251

This hose is designed for the most severe service in mines, quarries and heavy construction. Built with a tough neoprene tube to handle air, water, petroleum products and a number of acids and chemicals. The THORO-BRAID[®] hose cover offers excellent resistance to ozone, weather, abrasion and several acids and chemicals. The cover is also flame resistant with an embossed MSHA legend. 4:1 Design factor

Tube: Cover: Reinforcement: Temp. Range: Branding:

Brand Description:

Black Neoprene Yellow Hypalon One or multiple wire braids -20° F to +200° F PARKER/DAYCO USA 7251 THORO-BRAID® AIR HOSE-WIRE BRAID XXX PSI MAX WP-DE4 FIRE RESISTANT-MSHA IC-123/3-(DATE CODE) -001 Embossed Brand

Approx. Min. Max. ID ID Reinf. OD OD Wt. Per Bend Rec. Part No. 100 Ft. Radius WP (in.) (mm) Layers (in.) (mm) 122 7251-1501K 1 1/2 38.1 1 2.062 52.4 20.0 600 7251-2002K 2 2.656 2 50.8 67.5 189 25.0 600 2 1/2 2 7251-2502K 63.5 3.156 80.2 230 32.0 500 76.2 2 7251-3002K 92.9 З 3.656 273 36.5 500 2 7251-4002K* 4 363 101.6 4.656 118.3 48.0 400 LENGTHS: Random lengths - 150 ft. +0 ft./-20 ft., 3 pieces max.,

50 ft. min. length. *7251-4002K is tire wrapped and packaged in either 6/50 ft. or 3/100 ft.

COUPLINGS: Coupling Style 2, 3, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

GRIZZLY[™] 500 Multi-Purpose Hose Series 7107

The GRIZZLY[™] 500 Hose is a premium hose designed for multiple uses. With it's modified NBR/PVC cover compound, abrasion and oil resistance has been significantly improved. GRIZZLY[™] 500 Hose is the answer for numerous applications such as agricultural, foundry, factories, mines and many more applications where a heavy duty hose construction is required. It has the toughness of a braided hose in a flexible spiral construction. GRIZZLY[™] 500 Hose meets the MSHA Flame Resistance requirements and is electronically non-conductive with a minimum resistance of one megohm per inch at 1000 volts DC. The tube of the GRIZZLY[™] hose exceeds RMA Class A Oil Resistance. Note: Do not use for hot dry air applications.

Tube: Cover: Reinforcement:	Black Nitrile Yellow NBR/PVC blend Multiple textile spirals
Temp. Range:	-40° F to +212° F
Branding:	PARKER/DAYCO SERIES 7107 GRIZZLY™ 1/4 ID (6.4 MM)
	500 PSI MAX WP Side 2 ELECTRICALLY NON-CONDUCTIVE
	MSHA IC-123/20 MADE IN USA (DATE CODE)
Brand Description:	Ink Brand - Black letter color

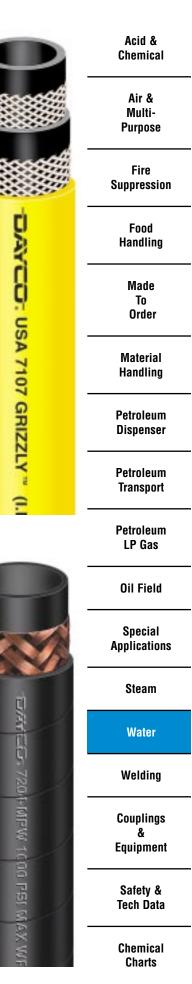
Part No.	ID (in.)	ID (mm)	Reinf. Spirals	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
7107-25500	1/4	6.4	4	0.625	15.9	15	2.0	500
7107-38500	3/8	9.5	4	0.750	19.1	19	2.5	500
7107-50500	1/2	12.7	4	0.875	22.2	26	3.0	500
7107-75500	3/4	19.1	4	1.187	30.1	39	4.5	500
7107-100500	1	25.4	4	1.500	38.1	56	6.0	500

LENGTHS: Exact length reels with +/- 50 ft., max. 2 pieces, 50 ft. min. length. Reel quantities 1/4 in.-750 ft., 3/8 in.-650 ft., 1/2 in. -500 ft., 3/4 in.-400 ft., 1 in.-300 ft.

COUPLINGS: Coupling style 1, 2, 3, 8, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

MPW - 1000[®] Multi-Purpose Hose Series 7204

This versatile multi-purpose hose is ideal for rugged service in many industrial and high pressure steam cleaning applications. In addition to air and water service, the oil resistant tube and cover will handle a variety of acids and chemicals. Suitable for saturated steam service to 150 PSI and temperatures to 368° F. Also suitable to convey hot tar, wax and glue at 300° F continuous, 350° F intermittent. 4:1 Design factor (10:1 for 150 PSI steam applications)


Tube:	Black Nitrile
Cover:	Perforated Black Neoprene
Reinforcement:	One wire braid
Temp. Range:	-20° F to +300°/350°/368° F (steam)
Branding:	PARKER/DAYCO 7204 - MPW 1000 PSI MAX WP
-	(DATE CODE) MADE IN USA
Brand Description:	Èmbossed Brand

Part No.	ID (in.)	ID (mm)	Reinf. Layers	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP	Max. Steam WP
7204-381 7204-501 7204-751 7204-1001	3/8 1/2 3/4 1	9.5 12.7 19.1 25.4	2 2 2 2	0.781 0.906 1.187 1.500	23.0 30.1	28 34 52 75	5.0 7.0 9.5 12.0	1000 1000 1000 1000	150 150 150 150

LENGTHS:

Random lengths on reels. Max. 600 ft., min. 400 ft. 5 pieces max. per reel with 50 ft. length.

COUPLINGS: Coupling style 2, 3, 8, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

PWD High Pressure Washdown Hose

Series 7143

Brand Description:

A premium, flexible and lightweight hose for washdown service in applications such as meat and poultry plants. The specially blended cover provides excellent resistance to animal fats and oils, as well as improved abrasion resistance over similar hose products. Design factor: 1 Braid = 4:1 2 Braid = 3.5:1

WARNING: Not to be used for steam service!

Tube:	Block Synthetic Bubber
Tube:	Black Synthetic Rubber
Cover:	Gray (GY) or Yellow (YL
Reinforcement:	1 or 2 textile braids
Temp. Range:	-40° F to +250° F
Branding:	PARKER/DAYCO SERIE
	XXXX PSI MAX WP MA

llow (YL) Synthetic Rubber aids O SERIES 7143 PWD 3/8 ID (9.5 MM) WP MADE IN USA (DATE CODE) Ink Brand - Black letter color

Part No.	ID (in.)	ID (mm)	Reinf. Braids	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
7143-251YL	1/4	6.4	1	0.570	14.5	13	3.0	1000
7143-251GY	1/4	6.4	1	0.570	14.5	13	3.0	1000
7143-381GY	3/8	9.5	1	0.625	15.9	13	4.0	1000
7143-381YL	3/8	9.5	1	0.625	15.9	13	4.0	1000
7143-382GY	3/8	9.5	2	0.734	18.6	19	4.0	1500
7143-382YL	3/8	9.5	2	0.734	18.6	19	4.0	1500

LENGTHS: COUPLINGS: Random lengths on reels.

Coupling style 2, 3, 8, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

BLUE RIBBON® Pressure Washer Hose

Series 7247

Developed specifically for the food process industry, this blue, non-marking, oil and fatresistant hose provides 1500 PSI working pressure for efficient in-plant washdown service. For use with Parker/Dayco over-the-cover (non-skive) crimp couplings. 4:1 Design factor

WARNING: Not recommended for Steam Service!

Tube:	Black Neoprene
Cover:	Perforated blue Neoprene
Reinforcement:	One wire braid
Temp. Range:	-40° F to +250° F/275° F
Branding:	PARKER/DAYCO USA 7247 BLUE RIBBON® PRESSURE
-	WASHER HOSE 1/4 ID 1500 MAX WP DE2 (DATE CODE)
	NOT FOR STEAM SERVICE
Brand Description:	Ink Brand - White letter color

Brand Description:

Part No.	ID (in.)	ID (mm)	Reinf. Braid	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
7247-251BL	1/4	6.4	1	0.575	14.6	18	1.7	1500
7247-381BL	3/8	9.5	1	0.700	17.8	24	2.2	1500
7247-501BL	1/2	12.7	1	0.825	21.0	30	3.2	1500

LENGTHS: **COUPLINGS:** Random lengths on reels and specified cut lengths.

Coupling style 10, 11, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

CO: SERIES 7143 PWD 3/8 I.D. (9.5MM)

Pressure Washer Hose

Series 7258

This hose offers high pressure, high temperature (250° F continuous, 275° F intermittent) service in many industrial pressure washer applications. For use with Parker/Dayco over-the-cover (non-skive) crimp couplings. 4:1 Design factor

WARNING! Not for Steam Service.

Tube: Cover:	Black Neoprene Perforated black Neoprene
Reinforcement:	One wire braid
Temp. Range:	-40° F to +250° F/275° F
Branding:	PARKER/DAYCO USA 7258 PRESSURE WASHER HOSE
-	1/2 ID XXXX PSI MAX WP DE2 (DATE CODE) NOT FOR
	STEAM SERVICE
Brand Description:	Ink Brand - White letter color

Part No.	ID (in.)	ID (mm)	Reinf. Braids	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
7258-251BK	1/4	6.4	1	0.500	12.7	14	1.5	3000
7258-381BK	3/8	9.5	1	0.620	15.7	19	2.0	3000
7258-501BK	1/2	12.7	1	0.745	18.9	23	3.0	2500
7258-251BK050	1/4	6.4	1	0.500	12.7	14	1.5	3000
7258-381BK050	3/8	9.5	1	0.620	15.7	19	2.0	3000
7258-501BK050	1/2	12.7	1	0.745	18.9	23	3.0	2500

Acid & Chemical Air & Multi-Purpose Fire Suppression CO: USA 7258 PRESSUR Food Handling Made То Order Material Handling Ш Petroleum Dispenser Petroleum

LENGTHS: Random lengths on nominal 500 ft. reels and 50 ft. cut lengths. Also available in blue, gray, and yellow on quotation. COUPLINGS: Coupling style 8, or for other coupling recommendations refer to

 Coupling style 8, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling deails.

HYDRO-SPRAY[™] 800 Car Wash Hose Series 7235

For use in car washes to spray hot water and detergents. The nitrile tube and neoprene cover resists oil and detergents. Special two-braid textile reinforcement minimizes expansion and contraction under pressure. 4:1 Design factor

Tube:Black NitrileCover:Black NeopreneReinforcement:Multiple textile braidsTemp. Range:-40° F to +212° FBranding:PARKER/DAYCO SERIES 7235 HYDRO-SPRAY™ 1/2 ID
(6.4 MM) 800 PSI MAX WP MADE IN USA DE1
(DATE CODE)Brand Description:Ink Brand - White letter color

Part No.	ID (in.)	ID (mm)	Reinf. Braids	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
7235-252	1/4	6.4	2	0.594	15.1	14	3.0	1000
7235-382	3/8	9.5	2	0.750	19.1	21	4.0	1000
7235-502	1/2	12.7	2	0.875	22.2	26	5.0	800

LENGTHS: Random lengths on reels, Max 600 ft. Min. 400 ft., 50 ft. min length. COUPLINGS: Coupling style 8 or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details. Petroleum LP Gas Oil Field Special Applications Steam Water Welding Couplings & Equipment Safety & Tech Data Chemical Charts

Transport

I

SERIES

7235

DAYCO: SERIES 7079 ECW ECONOMY WAS

ECW[™] Economy White Washdown Hose

Series 7079

ECW[™] hose is primarily designed for use in food plants, breweries, and any place a flexible, lightweight washdown hose is needed. 4:1 Design factor

Tube: Cover: Reinforcement: Temp. Range: Branding: Black EPDM White EPDM Multiple textile spirals -40° F to +212° F PARKER/DAYCO SERIES 7079 ECW ECONOMY WASHDOWN 3/4 ID (19.1 MM) 300 PSI MAX WP MADE IN USA Ink Brand - Black letter color

Brand Description:

Part No.	ID (in.)	ID (mm)	Reinf. Spirals			Approx. Wt. Per. 100 Ft.	Bend	Max. Rec. WP
-75304	3/4	19.1	4	1.156	29.4	37	5.0	300
-7530450	3/4	19.1	4	1.156	29.4	37	5.0	300

LENGTHS: 350 ft. reels (+50 ft./-0 ft.) 90% 1 pc., 10% 2 pc.- min. length 50 ft. 50 ft. cut lengths = 48 each, coiled & tied in pallet boxes.

COUPLINGS: Coupling style 2, 3, 8, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

HDW[™] Creamery Washdown Hose Series 7080

The HDW-Heavy Duty Washdown hose is designed for general washdown and equipment cleaning requirements in food processing, dairy product processing and industrial plants. The high quality EPDM tube compound allows this hose to be used for 212° F hot water at 300 PSI or saturated steam to +298° F/+148° C at 50 PSI maximum.

4:1 Design factor

Tube: Cover: Reinforcement: Temp. Range: Branding Example:	Black high grade EPDM White high grade EPDM Multiple textile spirals -40° F to +212° F @ 300 PSI and to +298° F @ 50 PSI PARKER/DAYCO SERIES 7080 HDW CREAMERY WASHDOWN 3/4 in. ID (19.1 MM) 300 PSI MAX WP MADE IN USA
Brand Description:	Ink Brand - Black letter color

Approx. Min. Max. ID ID Reinf. OD OD Wt. Per Rec. Bend WP Part No. (in.) (mm) Spirals (in.) (mm) 100 Ft. Radius 7080-75304 3/4 1.250 300 19.1 4 31.8 48 6.5 4 1.250 300 7080-7530450 3/4 19.1 31.8 48 6.5 350 ft. reels (+50 ft./-0 ft.), 90% 1 pc., 10% 2 pc. -50 ft. min. LENGTHS:

COUPLINGS: Coupling style 2, 3, 8, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

DAYCO: SERIES 7080 HDW CREAMERY WA

WILDCATTER® Washdown Hose

Series 7360

WILDCATTER® hose is a general purpose washdown hose, designed with a rugged yet flexible construction for ease of handling in many tough applications including breweries, dairies, food plants, paper mills and oil rigs. Available with and without built-in nozzle.

4:1 Design factor

Tube: Cover:	White SBR White SBR
Reinforcement:	Multiple textile plies
Temp. Range:	-20° F to +212° F
Branding:	PARKER/DAYCO SERIES 7360 WILDCATTER WASH
0	DOWN HOSE MADE IN USA 001 (7360 WITH NOZZLE
	MADE IN ITALY)
Brand Description:	Tape Brand - Blue Stripe with White letters.

Part No.	ID (in.)	ID (mm)	Reinf. Plies	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
7360-50*	1/2	12.70	2	1.008	25.60	37	4.0	150
7360-75*	3/4	19.05	2	1.250	31.75	49	6.0	150
7360-100*	1	25.40	2	1.598	40.59	75	8.0	150
7360-125*	1 1/4	31.75	2	1.875	47.63	93	12.0	150
7360-150*	1 1/2	38.10	2	2.125	53.98	107	18.0	150
7360-200*	2	50.80	4	2.748	69.80	172	24.0	150

LENGTHS:

50 ft.

*add 150 to part number above for length without nozzle *add F050 to part number above for length with nozzle

Coupling style 2, 3, 7, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details. COUPLINGS: WARNING! combination nipple with bands reduces the working pressure of the assembly to less than the hose's max working pressure. Refer to NAHAD Assembly Guidelines for working pressures.

	Acid & Chemical
	Air & Multi- Purpose
ġ	Fire Suppression
	Food Handling
RIES 7360	Made To Order
WILDCATT	Material Handling
TER WA	Petroleum Dispenser
	Petroleum Transport
	Petroleum LP Gas
	Oil Field
	Special Applications
	Steam
	Water
	Welding
	Couplings &
	Equipment

Safety & **Tech Data**

GST[®] II General Service Air & Water Hose 7031–GREEN 7093-BLACK Series 7096-YELLOW 7057-BLUE 7092–BRIGHT RED

An economical and versatile general purpose hose, which is excellent for air & water service, as well as many agricultural chemicals including LASSO® herbicide. The EPDM tube and cover resists heat, sunlight, ozone and weathering. The GST II hose exceeds RMA class C medium oil resistance requirements. Suitable for applications such as oil mist lubricating air lines, but NOT suitable for the transfer of petroleum products. Closely plied reinforcement of high tensile textile cord provides excellent coupling retention and kink resistance. 4:1 Design factor

Tube: Cover: Reinforcement: Temp. Range: Branding Example:

Brand Description:

Black EPDM EPDM - colors referenced above Multiple textile spirals -40° F to +212° F PARKER/DAYCO SERIES 7031 GST® II ID (IN & MM) XXX PSI MAX WP MADE IN USA Ink Brand - White letter color

Part No.	ID (in.)	ID (mm)	Reinf. Spirals	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP	
-19200	3/16	4.8	2	0.437	11.1	6	2.0	200	
-19300	3/16	4.8	2	0.437	11.1	8	2.0	300	
-25200	1/4	6.4	2	0.500	12.7	9	2.5	200	
-2520050	1/4	6.4	2	0.500	12.7	9	2.5	200	
-25300	1/4	6.4	2 2	0.550	14.0	12	3.3	300	
-2530050	1/4	6.4	2	0.550	14.0	12	3.3	300	
-31200	5/16	7.9	2 2	0.594	15.1	13	3.3	200	
-3120050	5/16	7.9	2	0.594	15.1	13	3.3	200	
-31300	5/16	7.9	2 2	0.625	15.9	13	3.5	300	
-3130050	5/16	7.9	2	0.625	15.9	13	3.5	300	
-38200	3/8	9.5	2	0.656	16.7	14	3.5	200	
-3820050	3/8	9.5	2	0.656	16.7	14	3.5	200	
-38300	3/8	9.5	2 2 2	0.688	17.5	17	4.0	300	
-3830050	3/8	9.5	2	0.688	17.5	17	4.0	300	
-50200	1/2	12.7	2	0.813	20.7	21	4.5	200	
-5020050	1/2	12.7	2 2 2	0.813	20.7	21	4.5	200	
-50250*	1/2	12.7	2	0.844	21.4	23	4.5	250	
-5025050	1/2	12.7	2	0.844	21.4	23	4.5	250	
-50304	1/2	12.7	4	0.875	22.2	25	5.0	300	
-5030450	1/2	12.7	4	0.875	22.2	25	5.0	300	
-63200	5/8	15.9	2	0.969	24.6	24	5.5	200	
-6320050	5/8	15.9	2	0.969	24.6	24	5.5	200	
-63304	5/8	15.9	4	1.062	27.0	30	5.5	300	
-6330450	5/8	15.9	4	1.062	27.0	30	5.5	300	
-75200	3/4	19.1	2	1.109	28.2	32	6.0	200	
-7520050	3/4	19.1	2	1.109	28.2	32	6.0	200	
-75304*†	3/4	19.1	4	1.156	29.4	37	6.0	300	
-7530450*†	3/4	19.1 25.4	4	1.156 1.406	29.4 35.7	37 44	6.0	300 200	
-100200	1	-	2 2			44	7.0		
-10020050	1	25.4	2 4	1.406	35.7	44 53	7.0	200	
-100304 -10030450	1	25.4 25.4	4	1.438 1.438	36.5 36.5	53	8.0	300 300	
-125204	1-1/4	25.4 31.75	4	1.430	45.2	77	8.0 9.0	200	
-125204 -150204	1-1/4	31.75	4	2.031	45.2 51.6	86	9.0 10.0	200	
-150204 -15020450	1-1/2	38.1	4	2.031	51.6	86	10.0	200	
-15020450	1-1/2	38.1	4	2.031	51.6	86	10.0	200	
LENGTHS:		1				1		1	
	Exact length reels (+50 ft./-0 ft.), 90% 1 pc., 10% 2 pc 50 ft. min. length.								

50 ft. cut lengths are coiled and tied in pallet boxes.

*Sizes stocked in green and blue

†Sizes stocked in yellow

Contact Parker or check Price Schedule for availability.

COUPLINGS:

Coupling style 1, 2, 3, 5, 7, 8, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

MPT[®] II Multi-Purpose–Oil Resistant Air & Water Hose - Non-Conductive Series 7094 (Red) Series 7095 (Black)

MPT[®] II is a premium high quality, economical, multi-purpose hose that is oil resistant, excellent for air and water service and many chemicals. Closely plied reinforcement of high tensile textile cord provides excellent coupling retention and kink resistance. The hose is electrically non-conductive with a minimum resistance of one megohm per inch at 1000 volts DC. MPT II hose exceeds RMA Class A-High Oil Resistance requirements. 4:1 Design factor

Note: Do not use for hot dry air applications.

	<i>,</i> , , , , , , , , , , , , , , , , , ,
Tube:	Black Nitrile
Cover:	Red or Black Neoprene
Reinforcement:	Multiple textile spirals
Temp. Range:	-20° F to +212° F
Branding:	PARKER/DAYCO SERIES 7094 MPT® II 3/16 ID (4.8 MM)
-	XXX PSI MAX WP MADE IN USA - ELECTRICALLY
	NON-CONDUCTIVE
Brand Description:	Ink Brand - White letter color

Part No.	ID (in.)	ID (mm)	Reinf. Spirals	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
-19200	3/16	4.8	2	0.437	11.1	5	1.8	200
-19300	3/16	4.8	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.437	11.1	5	1.8	300
-25200	1/4	6.4		0.500	12.7	9	2.0	200
-2520050*	1/4	6.4	2	0.500	12.7	9	2.0	200
-25300 -2530050*	1/4 1/4	6.4 6.4		0.550 0.550	14.0 14.0	12 12	2.5 2.5	300 300
	5/16	6.4 7.9		0.550	14.0	12	2.5	200
-31200* -3120050*	5/16	7.9		0.594 0.594	15.1	13	3.0 3.0	200
-3120050	5/16	7.9		0.594	15.1	13	3.0	300
-3130050*	5/16	7.9		0.594	15.1	13	3.3	300
-38200	3/8	9.5	2	0.656	16.7	15	3.8	200
-3820050*	3/8	9.5	2	0.656	16.7	15	3.8	200
-38300	3/8	9.5	2	0.688	17.5	17	3.8	300
-3830050	3/8	9.5	2	0.688	17.5	17	3.8	300
-50200	1/2	12.7	2	0.813	20.7	21	5.0	200
-5020050*	1/2	12.7	2	0.813	20.7	21	5.0	200
-50250	1/2	12.7	2	0.844	21.4	22	5.0	250
-5025050*	1/2	12.7	2	0.844	21.4	22	5.0	250
-50304	1/2	12.7	4	0.875	22.2	26	5.0	300
-5030450	1/2	12.7	4	0.875	22.2	26	5.0	300
-63200*	5/8	15.9	2 2	0.969	24.6	36	5.5	200
-6320050*	5/8	15.9	2	0.969	24.6	36	5.5	200
-63304	5/8	15.9	4	1.062	27.0	37	6.1	300
-6330450*	5/8	15.9	4	1.062	27.0	37	6.1	300
-75200	3/4	19.1	2 2	1.109	28.2	34	7.5	200
-7520050*	3/4	19.1	2	1.109	28.2	34	7.5	200
-75304	3/4	19.1	4	1.156	29.4	39	6.0	300
-7530450	3/4	19.1	4	1.156	29.4	39 50	6.0	300
-100200	1	25.4	2 2	1.406	35.7 35.7	50	10.0	200
-10020050* -100304		25.4 25.4	4	1.406 1.438	35.7 36.5	50 54	10.0 8.0	200 300
-100304 -10030450*		25.4 25.4	4	1.438	36.5			300
-125204	 1-1/4		4	1.438	45.2	54 77	8.0 9.0	200
-150204	1-1/4	38.1	4	2.031	45.2 51.6	86	10.0	200
-150204	1-1/2		4	2.031	51.6	86	10.0	200
-15020430	1-1/2		4	2.031	51.6	86	10.0	200
		1	· · ·		1 00		1	

AVAILABILITY: LENGTHS: * Non-stock **Stock in red cover only ID sizes 3/16 in. through 1 in. are 90% 1 piece, 10% 2 piece-50 ft. min. length. (Total footage on reels is +50 ft./-0 ft. of length shown). 1-1/4 in. and 1-1/2 in. I.D. sizes are 70% 1 piece, 30% 2 piece, min. length 50 ft. Total reel quantity is ±10%

COUPLINGS:

Coupling style 1, 2, 3, 5, 7, 8, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

Welding Couplings & Equipment

Acid &

Chemical

Air &

Multi-Purpose

Fire

Suppression

Food Handling

> Made To Order

Material

Handling

Petroleum Dispenser

Petroleum Transport

Petroleum LP Gas

Oil Field

Special Applications

Steam

Water

DAYCO- SERIES 7094 MPT

N/1:

N/~~

Safety & Tech Data

SUPER-FLEX[®] GS General Service Air & Water Hose Series 7322 - RED – Series 7323 - BLACK

A superior quality general service air and water hose that is a rigid mandrel construction, which produces a TRUE round, concentric hose. Superior adhesion of the hose layers provides endurance in tough applications. All of this added with SUPER flexibility for easier handling. Rated for medium oil resistance for oil mist lubricated air lines; meets RMA class C medium oil resistance, per ASTM D-471. 4:1 Design factor

Tube:Black EPDMCover:Black or Red EPDMReinforcement:Textile pliesTemp. Range:-40° F to +212° FBranding:PARKER/DAYCO SERIES 7322 SUPER-FLEX® GS
1-1/4 ID 200 PSI MAX WP GENERAL SERVICE
MADE IN USABrand Description:Tape Brand - White letters

Part No.	Pkg.	ID (in.)	ID (mm)	Reinf. Plies	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
-125200	200'	1 1/4	31.8	2	1.741	44.2	71	7.5	200
-12520050	50'	1 1/4	31.8	2	1.741	44.2	71	7.5	200
-125200100	100'	1 1/4	31.8	2	1.741	44.2	71	7.5	200
-125200A	reel	1 1/4	31.8	2	1.741	44.2	71	7.5	200
-150200	200'	1 1/2	38.1	2	1.985	50.4	82	8.5	200
-15020050	50'	1 1/2	38.1	2	1.985	50.4	82	8.5	200
-150200100	100'	1 1/2	38.1	2	1.985	50.4	82	8.5	200
-150200A	reel	1 1/2	38.1	2	1.985	50.4	82	8.5	200
-200200	200'	2	50.8	4	2.568	65.2	123	12.0	200
-202050 -20200100	50' 100'	2 2	50.8 50.8	4 4	2.568 2.568	65.2 65.2	123 123	12.0 12.0	200 200
	•	•				1	1	•	•

LENGTHS: 50 ft., 100 ft., 200 ft. coils, tied and plastic "tire" wrapped. Reels are 2 pieces, 200 ft. each. No cutting of stock hose. Contact Customer Service for guotation on special hose from factory.

COUPLINGS: Coupling style 2, 3, 7, 8, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details. WARNING! Combination nipple and bands reduces the working pressure of the assembly to less than the hose's max working pressure. Refer to NAHAD Assembly Guidelines for working pressures.

100	
and the second se	
and the second se	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
20	
NN N	
and the second s	
and the second se	
100 March 100 Ma	
and the second se	
and the second se	
CO- 7322 SUPER-FLE	
and the second se	
60	

SUPER MPT Hose Series 7396 - RED – Series 7397 - BLACK

A premium oil resistant multi-purpose hose that is a rigid mandrel construction, which produces a TRUE round, concentric hose. Superior adhesion of the hose layers provides endurance in tough applications. All of this added with SUPER flexibility for easier handling. The tube is rated for RMA Class A-High Oil Resistance. The hose is electrically non-conductive with a minimum resistance of one megohm per inch at 1000 volts DC. 4:1 Design factor

Tube: Cover:	Black Nitrile Rubber Black or Red Nitrile/PVC
Reinforcement:	Multiple textile plies
Temp. Range:	-20° F to +212° F
Branding:	PARKER/DAYCO SERIES 7396 SUPER MPT MULTI-
-	PURPOSE HOSE XXX PSI MAX WP ELECTRICALLY
	NON-CONDUCTIVE MADE IN USA
Brand Description:	Tape Brand - White letters

Part No.	Pkg.	ID (in.)	ID (mm)	Reinf. Plies	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
-125200200 -12520050 -125200100 -125200A	200' 50' 100' reel	1 1/4 1 1/4 1 1/4 1 1/4	31.8 31.8 31.8 31.8 31.8	2 2 2 2 2	1.741 1.741 1.741 1.741	44.2 44.2 44.2 44.2	70 70 70 70	7.5 7.5 7.5 7.5	200 200 200 200
-150200200 -15020050 -150200100 -150200A	200' 50' 100' reel	1 1/2 1 1/2 1 1/2 1 1/2 1 1/2	38.1 38.1 38.1 38.1	2 2 2 2	1.985 1.985 1.985 1.985	50.4 50.4 50.4 50.4	80 80 80 80	8.5 8.5 8.5 8.5	200 200 200 200
-200200200 -20020050 -200200100	200' 50' 100'	2 2 2	50.8 50.8 50.8	4 4 4	2.568 2.568 2.568	65.2 65.2 65.2	122 122 122	12.0 12.0 12.0	200 200 200
-125300200 -12530050 -125300100 -125300A	200' 50' 100' reel	1 1/4 1 1/4 1 1/4 1 1/4 1 1/4	31.8 31.8 31.8 31.8 31.8	4 4 4 4	1.798 1.798 1.798 1.798 1.798	45.7 45.7 45.7 45.7	79 79 79 79 79	7.5 7.5 7.5 7.5	300 300 300 300
-150300200 -15030050 -150300100 -150300A	200' 50' 100' reel	1 1/2 1 1/2 1 1/2 1 1/2 1 1/2	38.1 38.1 38.1 38.1	4 4 4 4	2.025 2.025 2.025 2.025 2.025	51.4 51.4 51.4 51.4	87 87 87 87	8.5 8.5 8.5 8.5	300 300 300 300
-200300200 -20030050 -200300100	200' 50' 100'	2 2 2	50.8 50.8 50.8	4 4 4	2.600 2.600 2.600	66.0 66.0 66.0	129 129 129	12.0 12.0 12.0	300 300 300

LENGTHS: 50 ft., 100 ft., 200 ft. and reels, all sizes except 2 in. is not available on reels. Reels have two 200 ft. lengths per reel. COUPLINGS: Coupling style 2, 3, 7, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details. WARNING! Combination nipple with bands reduces the

working pressure of the assembly to less than the hose's max working pressure. Refer to NAHAD Assembly Guidelines for working pressure.

	Acid & Chemical
	Air & Multi- Purpose
	Fire Suppression
DANCE	Food Handling
- ∞ 7396 \$	Made To Order
SUPER M	Material Handling
IPT HOS	Petroleum Dispenser
-m-	Petroleum Transport
	Petroleum LP Gas
	Oil Field
	Special Applications
	Steam
	Water
	Welding
	Couplings &

Safety & **Tech Data**

Equipment

Water

Contractor Water Hose - Rubber Series 7093CW

This economical hose is designed for the tough operating environments of the general contractor for use in washdown service and water convevance to a job site. Available in bulk reels, cut 50 foot lengths and 50 foot assemblies, coupled with male/female garden hose threads.

4:1 Design factor

Tube: Cover: **Reinforcement:** Temp. Range: Branding:

Black EPDM Black EPDM Multiple textile spirals -40° F to +212° F CONTRACTOR WATER HOSE 200 PSI MAX WP MADE IN USA DE-1 Ink Brand - White letter color

Brand Description:

Part No.	ID (in.)	ID (mm)	Reinf. Spirals	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP	Package
7093-75200CW	3/4	19.1	2	1.109	28.2	32	6.0	200	350' reel
7093-7520050CW	3/4	19.1	2	1.109	28.2	32	6.0	200	50' uncoupled
7093BCWGH-600	3/4	19.1	2	1.109	28.2	33.3	6.0	200	50' coupled

LENGTHS:

350 ft. exact length reels, +/-0, 90% 1 piece, 10% 2 piece, 50 ft. min. lengths. 50 ft. lengths (bulk or coupled) are coiled and tied, 3 lengths per carton.

Coupling style 1, 2, 3, 5, 8, or for other coupling recommendations COUPLINGS: refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

Contractor Water Hose - PVC

This is an economical water hose designed for general contractor use. The PVC cover provides excellent abrasion resistance, which relates to longer service life. Available in both bulk and coupled lengths.

3:1 Design factor

Tube:	Black PVC
Cover:	Black PVC
Reinforcement:	Multiple textile spirals
Temp. Range:	+20° F to +140° F
Branding:	SWAN CONTRACTOR WATER HOSE150 PSI
-	WPMADE IN USA3/4 in. ID-19 MM
Brand Description:	Ink Brand - White letter color

Bulk Part No.	ID (in.)	ID (mm)	Reinf. Spirals	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP	Qty / Std. Pkg.
39357 39358 39359	5/8 3/4 3/4	15.9 19.1 19.1	2 2 2	0.881 1.030 1.030	22.4 26.1 26.1	19 21 21	6.0 7.0 7.0	150 150 150	500' 5/50' 500'
Coupled Part No.									
39378 39379	5/8 3/4	15.9 19.1	2 2	0.881 1.030	22.4 26.1	20 22	6.0 7.0	150 150	5/50' 5/50'
NOTE:		Coupled with machined brass male/female garden hose threads and external crimped ferrules.							
	e.	Deele	ra avaat	E00 #	. / 0.#	000/ 1 mia	00 100/ (о н

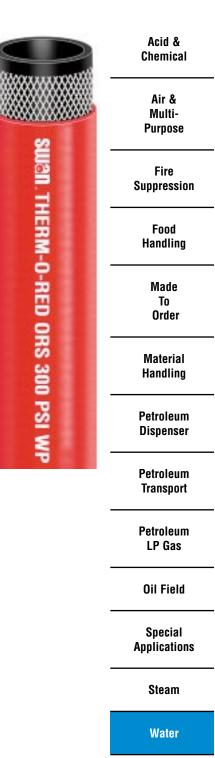
LENGTHS: Reels are exact 500 ft. +/-0 ft., 90% 1 piece, 10% 2 pc. - 50 ft. min. length. Both bulk cut 50 ft. lengths and coupled 50 ft. lengths are 5 per carton.

COUPLINGS: Garden hose type - Not available from Parker/Dayco, please contact Dixon.

CONTRACTORS WATER H

0

THERM-O-RED[®] ORS PVC Air Hose


THERM-O-RED[®] ORS hoses are made for air, water and moderate chemical applications. The tube is formulated with special additives to significantly increase the amount of oil resistance over normal PVC hoses. This special tube is protected by a non-marking cover. Combined, they provide a lightweight and highly flexible hose that is ideal for many industrial applications. 4:1 Design factor

Tube:	Orange Prime PVC with ORS additives
Cover:	Red Prime PVC
Reinforcement:	Multiple Textile Spirals
Temp. Range:	-20° F to +150° F
Branding:	SWAN THERM-O-RED ORS 200 PSI WP
-	MADE IN USA 3/4 in 19.1 MM
Brand Description:	Ink Brand - White letters (1" embossed only)

Part No.	ID (in.)	ID (mm)	Reinf. Spirals	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
39374 39375 39376 39377 39380	1/4 3/8 1/2 3/4	6.4 9.5 12.7 19.1 25.4	2 2 2 2 2	0.500 0.641 0.781 1.031 1.281	12.7 16.3 19.8 26.2 32.5	8.4 12.2 16.2 20.8 26.7	3.0 4.0 5.0 8.0 11.0	300 300 300 200 200

LENGTHS: Exact length 500 ft. reels, 90% 1 pc., 50 ft. min. length. 1 in. = 250 ft. reel.

COUPLINGS: Coupling style 1, 2, 3, 5, 7, 8, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

Welding

Couplings & Equipment

Safety & Tech Data

9

THERM-O-BLUE® ORS PVC Air Hose

THERM-O-BLUE[®] ORS Hoses are made for air, water and moderate chemical applications. The tube is formulated with special additives to significantly increase the amount of oil resistance over normal PVC hoses. This special tube is protected by a non-marking cover. Combined, they provide a lightweight and highly flexible hose that is ideal for many industrial applications. 4:1 Design factor

Tube: Cover: Reinforcement: Temp. Range: Branding:

Brand Description:

Orange Prime PVC with ORS additives Blue Prime PVC Multiple Textile Spirals -20° F to +150° F ---SWAN THERM-O-BLUE ORS --- 200 PSI WP ---MADE IN USA --- 3/4 in.-19.1 MM ---Ink Brand - White letters (1 in. embossed only)

Part No.	ID (in.)	ID (mm)	Reinf. Spirals	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
39390	1/4	6.4	2	0.500	12.7	8.4	3.0	300
39391*	1/4	6.4	2	0.500	12.7	8.4	3.0	300
39392**	1/4	6.4	2	0.500	12.7	8.4	3.0	300
39393	3/8	9.5	2	0.641	16.3	11.9	4.0	300
39394*	3/8	9.5	2	0.641	16.3	11.9	4.0	300
39395**	3/8	9.5	2	0.641	16.3	11.9	4.0	300
39396	1/2	12.7	2	0.781	19.8	15.9	5.0	300
39397	3/4	19.1	2	1.031	26.2	21.6	8.0	200
39398	1	25.4	2	1.281	32.5	27.9	11.0	200

LENGTHS:

*5-50 ft. lengths per carton **3-100 ft. lengths per carton. Exact 500 ft. reels, 90% 1 piece, 50 ft. min. length, 1 in. = 250 ft. reel.

COUPLINGS: Coupling style 1, 2, 3, 5, 7, 8, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

and and a second se	
-	
100	
	-
ũ	
ä	
3	
300	
300	
300 I	
300 P	
300 PS	
300 PS	
300 PSI	
300 PSI	
300 PSI V	
300 PSI W	
300 PSI WI	
300 PSI WP	
300 PSI WP	and the second se
300 PSI WP	and the second se
300 PSI WP	and the second se

Heater Hose

Series 7186

Lightweight hose designed for automotive coolant heater hose service. Also ideal for low pressure water discharge. Resistant to LASSO[®] herbicide. 4:1 Design factor

Tube:	Black EPDM
Cover:	Black EPDM
Reinforcement:	Multiple textile plies
Temp. Range:	-40° F to +212° F
Branding:	PARKER/DAYCO SERIES 7186 HEATER HOSE 1/2 ID
-	(12.7 MM) MADE IN USA
Brand Description:	Ink Brand - White Letter color

Part No.	ID (in.)	ID (mm)	Reinf. Plies	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
7186-501 7186-501050 7186-631 7186-631050 7186-751 7186-751050	1/2 1/2 5/8 5/8 3/4 3/4	12.7 12.7 15.9 15.9 19.1 19.1	2 2 2 2 2 2 2 2 2	0.781 0.781 0.906 0.906 1.031 1.031	19.8 19.8 23.0 23.0 26.2 26.2	18 18 21 21 25 25	6.0 6.0 8.0 9.0 9.0	125 125 90 90 70 70 70

LENGTHS:

HS: Random lengths on reels, 550 ft. max, 400 ft. min, max. 3 pieces with min. 50 ft. length.

COUPLINGS: Coupling style 5, 8, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

JIFFY[®] HOSE Air Hose - MSHA Series 7212

This oil resistant hose is excellent for use with air tools, to convey water, mild chemicals and various petroleum products. Light, flexible and couples in a jiffy - no clamps or special tools needed. Special braid angle for quick and secure push-on coupling retention. Available in various colors for color coding line. Flame resistant cover is branded with MSHA approval number. 4:1 Design factor

Tube: Cover: Reinforcement: Temp. Range: Branding:	Black Nitrile Black, blue, gray, green or red Neoprene One textile braid -40° F to +212° F PARKER/DAYCO 7212 JIFFY® HOSE PUSH-ON 1/4 in. ID 300 PSI MAX WP MSHA# MADE IN USA DE1 (DATE CODE)
Brand Description:	Ink Brand - White or black letter color

Part No.	ID (in.)	ID (mm)	Reinf. Braid	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
7212-251	1/4	6.4	1	0.500	12.7	9	3.0	300
7212-381	3/8	9.5	1	0.625	15.9	12	3.0	300
7212-501	1/2	12.7	1	0.750	19.1	15	5.0	300
7212-631	5/8	15.9	1	0.906	23.0	20	6.0	300
7212-751	3/4	19.1	1	1.031	26.2	26	7.0	300
LENGTHS:		Random lengths on reels. Max. 600 ft., min. 400 ft., 5 pieces max.						es max.
COUPLINGS:	Coup to NA	with 50 ft. min. length. Coupling style 8, 9, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Couplings Style Pages in the back of the catalog for coupling details.						
**					(ONI /		

*Note: Add BK (black), BL (blue), GY (gray), GN (green) or RD (red) to complete part number.

	Air & Multi- Purpose
ç.	Fire Suppression
	Food Handling
- SERIES	Made To Order
186 HE	Material Handling
ATER H	Petroleum Dispenser
0	Petroleum Transport
	Petroleum LP Gas
	Oil Field
	Special Applications
d	Steam
AYC	Water
ġ	Welding
7212 J	Couplings & Equipment
IFFY ®	Safety & Tech Data
I	

Acid &

Chemical

JIFFY FLEX[™] 250 250 PSI Push-On Hose - Spiral

Series 7161

A non-conductive spiral construction combined with oil-resistant materials make JIFFY FLEX an excellent choice in applications for air tools and petroleum products, as well as other applications requiring conveyance of mild chemicals or water where a light, flexible hose is needed. Push-On couplings insert easily and hold tightly. No clamps or special tools are needed. Available in various colors for easy identification in color-coded applications. Flame resistant cover is MSHA approved and branded with an MSHA approval number. 4:1 Design factor

ID	Approx. Min. Max.					
(in)	ID Reinf. OD OD Wt. Per Bend Rec.					
Brand Description:	HOSE 1/4 in. ID 250 PSI MAX WP MSHA# ELECTRICALLY NON-CONDUCTIVE MADE IN USA DE1 (DATE CODE) Ink Brand - Various letter colors					
Branding Example:	per inch at 1000 volts DC. PARKER/DAYCO 7161 JIFFY FLEX [™] 250 PUSH-ON					
Tube:	Black Nitrile					
Cover:	Neoprene					
Reinforcement:	Multiple Textile Spirals					
Temp. Range:	-20° F to +180° F					
Electrical Properties:	Non-conductive with a minimum resistance one megohm					

Part No.	ID (in.)	ID (mm)	Reinf. Spirals	OD (in.)	OD (mm)	Wt. Per 100 Ft.	Bend Radius	Rec. WP	
-25250 -38250 -50250	1/4 3/8 1/2	6.35 9.53 12.70	2	0.520 0.650 0.781	13.21 16.38 19.81	10 14 17	3.0 3.0 5.0	250 250 250	
	500 ft	All rools	are eva	ct lonath	. (⊥0 ft /_() ft) 85% (ne niece		

LENGTHS: 500 ft. All reels are exact length (+0 ft./-0 ft.) 85% one piece, 15% two piece - 50 ft. min. length.

COUPLINGS: Coupling style 8, 9, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

NOTE: Add BK (black), BL (blue), GY (gray), GN (green) or RD (red) to complete part number.

THORO-SPRAY[®] High Pressure Spray Hose – 800 PSI Series 7180

Designed for agricultural and residential high pressure spray applications. The tube will handle most pesticides, as well as liquid fertilizers. The cover is non-marking for safe use in residential areas. 4:1 Design factor

Tube: Cover: Reinforcement: Temp. Range: Branding: Black Nitrile Green Nitrile/PVC Multiple textile braids -20° F to +180° F PARKER/DAYCO USA 7180 THORO-SPRAY® HOSE - 800 PSI MAX WP Ink Brand - Black letter color

_ _ _

Brand Description:

Part No.	ID (in.)	ID (mm)	Reinf. Braids	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
7180-252	1/4	6.4	2	0.625	15.9	15	3.0	800
7180-382	3/8	9.5	2	0.750	19.1	20	4.0	800
7180-502	1/2	12.7	2	0.938	23.8	29	5.0	800
7180-752	3/4	19.1	2	1.250	31.8	48	6.5	800

LENGTHS: Random lengths on nominal 500 ft. reels, 5 piece maximum. **COUPLINGS:** Coupling style 2, 3, 8, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

Petroleum LP Gas

Oil Field

Special Applications

Steam

Water

Welding

Couplings & Equipment

Safety & Tech Data

DYNAFLEX[®] PVC Transparent Suction/Discharge Hose – FDA Series 7570

Designed to handle a variety of applications where a lightweight, flexible suction/discharge hose is required. A steel helix wire combined with a thick wall construction gives the hose excellent kink, abrasion and crush resistance. The transparency allows for easy inspection of product being conveyed. Flexible to -10° F. The steel helix wire provides static conductivity. Meets CFR, Title 21 parts 170-199. 3:1 Design factor

Color: Construction: Temp. Range:

Branding:

Transparent PVC Multi-component PVC extrusion with helix wire -10° F to +120° F None

Part No.	ID (in.)	ID (mm)	OD (in.)	OD (mm)	Approx. Wt Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
7570-750	3/4	19.1	1.020	25.9	21	3.0	100
7570-1000	1	25.4	1.340	34.0	34	3.5	85
7570-1250	1 1/4	31.8	1.630	41.4	42	6.3	75
7570-1500	1 1/2	38.1	1.940	49.3	52	7.5	75
7570-2000	2	50.8	2.500	63.5	84	9.8	75
7570-2500	2 1/2	63.5	3.200	81.3	121	12.0	55
7570-3000	3	76.2	3.630	92.2	148	15.0	55
7570-4000	4	101.6	4.720	119.9	235	19.7	35
7570-6000	6	152.4	6.950	176.5	429	23.0	30

LENGTHS: 100 ft. coils

COUPLINGS:

Coupling style 7, or for other coupling recommendations refer to NAHAD Assembly Guidelines.

HYDRO-AIRE[™] PVC Hose

LENGTHS:

COUPLINGS:

Hydro-Aire[™] hose is an extremely flexible and lightweight vinyl hose for air and water applications. Extruded PVC Tube. Black or Red 4:1 Design factor

Tube:	Black PVC
Cover:	Red or Black PVC
Reinforcement:	Multiple Textile Spirals
Temp. Range:	+20° F to +140° F
Branding:	SWAN HYDRO-AIRE [™] 150 PSI WPMADE IN USA
Brand Description:	1 in. (25.4 MM) Ink Brand - White letter color

Part No.	Color	ID (in.)	ID (mm)	Reinf. Spirals	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
39362	Red	1/4	6.4	2	0.500	12.7	10	2.5	250
39382	Black	1/4	6.4	2	0.500	12.7	10	2.5	250
39363	Red	5/16	7.9	2	0.593	15.9	12	3.0	250
39383	Black	5/16	7.9	2	0.593	15.9	12	3.0	250
39364	Red	3/8	9.5	2	0.641	16.3	14	3.5	250
39384	Black	3/8	9.5	2	0.641	16.3	14	3.5	250
39365	Red	1/2	12.7	2	0.781	19.8	18	5.0	250
39385	Black	1/2	12.7	2	0.781	19.8	18	5.0	250
39366	Red	5/8	15.9	2	0.921	23.0	22	6.5	250
39386	Black	5/8	15.9	2	0.921	23.0	22	6.5	250
39367	Red	3/4	19.1	2	1.031	27.0	27	7.5	200
39387	Black	3/4	19.1	2	1.031	27.0	27	7.5	200
39368	Red	1	25.4	2	1.281	33.7	36	10.0	150
39388	Black	1	25.4	2	1.281	33.7	36	10.0	150

in the back of the catalog for coupling details.

Exact 500 ft. reels, 90% 1 piece, 10% 2 pieces - 50 ft. min. length.

Available in cut lengths, coupled assemblies and various colors. Coupling style 1, 2, 3, 5, 7, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages

	Cileinicai
	Air & Multi- Purpose
\$	Fire Suppression
Wan. H	Food Handling
YDRO-AI	Made To Order
IRE "-15	Material Handling
50 PSI	Petroleum Dispenser
	Petroleum Transport
	Petroleum LP Gas
	Oil Field
	Special Applications
	Steam
	Water
	Walding

Acid &

Chemical

Welding

Couplings & Equipment

Safety & Tech Data

Water

Furnace Door Coolant Hose - Softwall Series 7385

Designed for industrial cooling applications with melting furnaces at steel mills, glassworks, foundries, etc., and other work sites that require a hose to withstand high external temperatures. Withstands steel splashes and external heat radiation up to 572° F and internal cooling water temperature to 212° F. 4:1 Design factor

Tube: Cover: Reinforcement: Temp. Range: Branding:

Black SBR Off-White Nomex[®] Fabric Multiple textile plies -20° F to +212° F internal, +572° F external None

Part No.	ID (in.)	ID (mm)	Reinf. Plies	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
7385-0500 7385-0750 7385-1000 7385-1250 7385-1500 7385-2000	1/2 3/4 1 1 1/4 1 1/2 2	12.70 19.05 25.40 31.75 38.10 50.80	2 2 2 2 2 2 2 4	0.969 1.260 1.442 1.718 2.135 2.679	24.61 32.00 36.63 43.64 54.23 68.05	30 45 47 60 101 138	5.0 6.0 8.0 9.0 12.0 24.0	150 150 150 150 150 150

LENGTHS: COUPLINGS: 100 ft. lengths up to 200 ft. on quotation.

S: Coupling style 2, 3, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

Furnace Door Coolant Hose - Hardwall Series 7386

The construction of this hose incorporates a steel helix wire that gives the hose suction capability and extra kink resistance. The hose is designed for industrial cooling applications with melting furnaces at steel mills, glassworks, foundries, etc., and other work sites that requires a hose to withstand high external temperatures. Withstands steel splashes and external heat radiation up to 572° F and internal cooling water temperature to 212° F.

4:1 Design factor

Tube:
Cover:
Reinforcement:
Temp. Range:
Branding:

Black SBR Off-White Nomex® Fabric Multiple textile plies -20° F to +212° F internal, +572° F external None

Part No.	ID (in.)	ID (mm)	Reinf. Plies	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
7386-0500	1/2	12.70	2	0.870	22.10	25	3.0	150
7386-0750	3/4	19.05	2	1.143	29.03	42	4.0	150
7386-1000	1	25.40	2	1.460	37.08	58	5.0	150
7386-1250	1 1/4	31.75	2	1.713	43.51	70	6.0	150
7386-1500	1 1/2	38.10	2	1.938	49.21	92	7.0	150
7386-2000	2	50.80	2	2.520	64.00	129	8.0	150

LENGTHS: 1 COUPLINGS: C

100 ft. Coupling style 2, 3, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

Welding

	page	series
SIAMEEZ® Twin Welding Hose - Grade T	. 132	. 7109
SIAMEEZ [®] Twin Welding Hose - Grade RM	. 133	. 7110
SIAMEEZ® Twin Welding Hose - Grade R	. 134	. 7126
Welding and Scarfing Hose	. 135	. 7228, 7229
Single Line Welding Hose - Grade T	. 136	. 7141, 7142
Single Line Welding Hose - Grade R		
Non-Conductive Cable Cover - Spiral.		
Oxygen Charging Hose		

131

SIAMEEZ[®] Twin Welding Hose Grade T Series 7109

OIL AND FLAME RESISTANT TUBE AND COVER

Warning! Care should be taken to avoid gouging, dragging, abrading or otherwise damaging the hose cover, which may also lead to premature hose failure. Do not attempt to repair or re-couple hose assemblies; replace all assemblies that show signs of age or abuse. Refer to RMA IP-11-5, "Welding Hose, Precautions for the Selection and Use of".

Warning! Bleed hoses when not in use for 30 minutes or longer. Couple with one inch ferrules only.

This hose is designed for portable or production line welding in factories, ships, construction work, etc. This hose is used with oxygen and most current fuel gases, including acetylene, hydrogen, propylene, propane, natural gas and MAPP[®] gas. The tube is non-blooming. Meets or exceeds RMA/CGA IP-7-99 standards for grade T, Type VD (vulcanized double) welding hose. Minimum 4:1 Design factor

Tube: Cover: Reinforcement: Temp. Range: Branding:	Black Neoprene Green (oxygen), Red (fuel gas) Neoprene Multiple Textile Spirals -40° F to +200° F PARKER/DAYCO 7109 WELDING ! WARNING FUEL GAS 3/16 ID MAX WP 200 PSI RMA/CGA IP-7-90 STD DUTY GRADE T COUPLE WITH ONE INCH FERRULES MADE
Brand Description:	IN USA (DATE CODE) Ink Brand - White letter color

Part No.	ID (in.)	ID (mm)	Reinf. Spirals	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
7109-191	3/16	4.8	2	0.438	11.1	15	2.0	200
7109-251	1/4	6.4	2	0.531	13.5	21	2.5	200
7109-311	5/16	7.9	2	0.594	15.1	28	3.0	200
7109-381	3/8	9.5	2	0.656	16.7	32	4.0	200

LENGTHS: Exact length reels, +/- 50 ft., 90% 1 piece, 50 ft. min. length and coupled assemblies.

COUPLINGS: Special right hand or left hand threaded brass inserts and crimp ferrules-not available from Parker/Dayco. Couplings not sold or quoted separately.

SIAMEEZ[®] Twin Welding Hose Grade RM Series 7110 **RED - ACETYLENE LINE ONLY** TUBE NOT OIL AND FLAME RESISTANT COVER OIL AND FLAME RESISTANT

Warning! Care should be taken to avoid gouging, dragging, abrading or otherwise damaging the hose cover, which may also lead to premature hose failure. Do not attempt to repair or re-couple hose assemblies; replace all assemblies that show signs of age or abuse. Refer to RMA IP-11-5, "Welding Hose, Precautions for the Selection and Use of".

Warning! Grade R & RM for use with acetylene gas ONLY! DO NOT use with any other fuel gas. Bleed hoses when not in use for 30 minutes or longer. Couple with one inch ferrules only.

This hose is designed for portable or production line welding in factories, ships, construction work, etc. Meets or exceeds RMA and CGA (Compressed Gas Association) specifications for type VD (vulcanized double), Grade RM welding hose. The cover is oil and flame resistant with a tube that is non-blooming. Minimum 4:1 Design factor

Tube:	Black SBR
Cover:	Green (oxygen), Red (acetylene) Neoprene
Reinforcement:	Multiple textile spirals
Temp. Range:	-40° F to +200° F
Branding:	PARKER/DAYCO 7110 WELDING ! WARNING ACETYLENE
-	ONLY 3/16 ID MAX WP 200 PSI RMA/CGA IP-7-99 STD DUTY
	GRADE RM COUPLE WITH ONE INCH FERRULES MADE IN USA
Brand Description:	Ink Brand - White letter color

- - -

rand Description:

Part No.	ID (in.)	ID (mm)	Reinf. Spirals	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
7110-191	3/16	4.8	2	0.438	11.1	15	2.0	200
7110-251	1/4	6.4	2	0.531	13.5	20	2.5	200
7110-311	5/16	7.9	2	0.594	15.1	25	3.0	200
7110-381	3/8	9.5	2	0.656	16.7	31	4.0	200

LENGTHS: Exact length reels, +/- 50 ft., 90% 1 piece, 10% 2 piece, 50 ft. min. length and coupled assemblies.

COUPLINGS: Special right hand or left hand threaded brass inserts and crimp ferrules-not available from Parker/Dayco. Couplings not sold or quoted separately.

Acid & Chemical
Air & Multi- Purpose
Fire Suppression
Food Handling
Made To Order
Material Handling
Petroleum Dispenser
Petroleum Transport
Petroleum LP Gas
Oil Field
Special Applications
Steam
Water

Couplings & Equipment

> Safety & **Tech Data**

SIAMEEZ[®] Twin Welding Hose - Grade R Series 7126 **RED - ACETYLENE LINE ONLY** TUBE AND COVER NOT OIL AND FLAME RESISTANT

Warning! Care should be taken to avoid gouging, dragging, abrading or otherwise damaging the hose cover, which may also lead to premature hose failure. Do not attempt to repair or re-couple hose assemblies; replace all assemblies that show signs of age or abuse. Refer to RMA IP-11-5, "Welding Hose, Precautions for the Selection and Use of".

Warning! Grade R & RM for use with acetylene gas ONLY! DO NOT use with any other fuel gas. Bleed hoses when not in use for 30 minutes or longer. Couple with one inch ferrules only.

This hose is recommended for portable or production line welding in factories, ships, construction work, etc. Meets or exceeds RMA and CGA (Compressed Gas Association) specifications for Type VD, Grade R welding hose. The tube is non-blooming. Minimum 4:1 Design factor

Tube: Black EPDM Cover: Vulcanized twin - Green (oxygen), Red (acetylene) EPDM Reinforcement: Multiple textile spirals Temp. Range: -20° F to +200° F Branding: PARKER/DAYCO 7126 WELDING ! WARNING ACETYLENE ONLY 3/16 ID MAX WP 200 PSI RMA/CGA IP-7-99 STD DUTY GRADE R COUPLE WITH ONE INCH FERRULES MADE IN USA Ink Brand - White letter color

Brand Description:

Part No.	ID (in.)	ID (mm)	Reinf. Spirals	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
7126-191	3/16	4.8	2	0.656	16.7	14	2.0	200
7126-251	1/4	6.4	2	0.531	13.5	10	2.5	200
7126-311	5/16	7.9	2	0.594	15.1	13	3.0	200
7126-381	3/8	9.5	2	0.656	16.7	28	4.0	200

LENGTHS: Exact length reels, +/- 50 ft., 90% 1 piece, 50 ft. min. length and coupled assemblies.

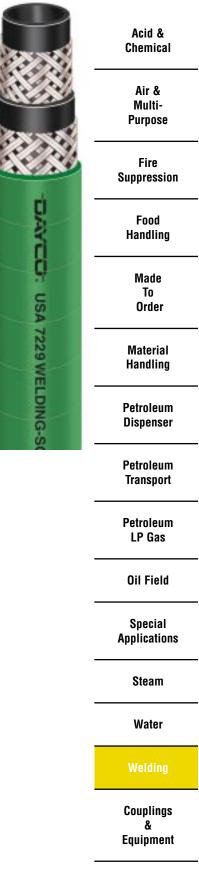
COUPLINGS: Special right hand or left hand threaded brass inserts and crimp ferrules-not available from Parker/Dayco. Couplings not sold or quoted separately.

Welding and Scarfing Hose Series 7228 - RED-ACETYLENE LINE ONLY Series 7229 - GREEN OXYGEN LINE

WARNING! For use with acetylene. Contact Dayco for recommendations on other fuel gases.

WARNING! Care should be taken to avoid gouging, dragging, abrading or otherwise damaging the hose cover, which may also lead to premature hose failure. Do not attempt to repair or re-couple hose assemblies; replace all assemblies that show signs of age or abuse. Refer to RMA IP-11-5, "Welding Hose, Precautions for the Selection and Use of".

Bleed hoses when not in use for 30 minutes or longer. Couple with one inch ferrules only.


Designed for heavy-duty welding and scarfing service; resists punishment from heat, sharp edges and rough treatment encountered in mills, industrial plants and mine sites. Oil and flame resistant cover. 4:1 Design factor.

Tube:Black SBRCover:Red or Green NeopreneReinforcement:Multiple textile braidsTemp. Range:-40° F to +180° FBranding:PARKER/DAYCO USA 7228 WELDING - SCARFING
HOSE 3/8 ID 250 PSI MAX WP DE2 (DATE CODE)Brand Description:Ink Brand - Black letter color

Part No.	ID (in.)	ID (mm)	Reinf. Braids			Approx. Wt. Per 100 Ft.	Bend	Max. Rec. WP
-382	3/8	9.5	2	0.812	20.6	27	4.5	250
-502	1/2	12.7	2	0.937	23.8	33	6.0	250

LENGTHS: Random lengths on nominal 500 ft. reels. Also available in specified cut lengths, 50 ft., & 100 ft. - on quotation.

COUPLINGS: Special right hand or left hand threaded brass inserts and crimp ferrules not available from Parker/Dayco. Couplings not sold or quoted separately.

Safety & Tech Data

Single Line Welding Hose - Grade T Series 7141 - RED - FUEL GAS LINE Series 7142 - GREEN - OXYGEN LINE OIL AND FLAME RESISTANT TUBE AND COVER

Warning! Care should be taken to avoid gouging, dragging, abrading or otherwise damaging the hose cover, which may also lead to premature hose failure. Do not attempt to repair or re-couple hose assemblies; replace all assemblies that show signs of age or abuse. Refer to RMA IP-11-5, "Welding Hose, Precautions for the Selection and Use of".

Warning! Bleed hoses when not in use for 30 minutes or longer. Couple with one inch ferrules only.

For all welding and cutting operations with oxygen and most current fuel gases, including acetylene, hydrogen, natural gas, propane, propylene and MAPP[®] gas, where separate lines are preferable. The tube is non-blooming. Meets or exceeds RMA/CGA IP-7-99 standards for Grade T, Type S welding hose. Minimum 4:1 Design factor

Tube: Cover: Reinforcement: Temp. Range: Branding: Black Neoprene Ribbed Red or Green Neoprene Multiple textile spirals -40° F to +200° F PARKER/DAYCO 7141 WELDING ! WARNING FUEL GAS 3/16 ID MAX WP 200 PSI RMA/CGA IP-7-99 STD DUTY GRADE T COUPLE WITH ONE INCH FERRULES MADE IN USA (DATE CODE) Ink Brand - White letter color

Brand Description:

Part No.	ID (in.)	ID (mm)	Reinf. Spirals	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
-19200	3/16	4.8	2	0.438	11.1	8	2.0	200
-25200	1/4	6.4	2	0.531	13.5	10	2.5	200
-31200	5/16	7.9	2	0.594	15.1	14	3.0	200
-38200	3/8	9.5	2	0.656	16.7	16	4.0	200
-50200	1/2	12.7	4	0.875	22.2	28	5.0	200

LENGTHS: COUPLINGS:

Exact length reels, +/- 50 ft., 90% 1 piece, 50 ft. min. length. Special right hand or left hand threaded brass inserts and crimp ferrules-not available from Parker/Dayco. Couplings not sold or guoted separately.

Series 7120 Series 7121 Series AND	- REI - GRI	D-ACE EEN O		E LINE I LINE		ſ				Acid & Chemical
Warning! Care otherwise dan failure. Do not assemblies th	naging t attem at show	the hos pt to re v signs	se cover pair or r of age o	, which e-coupl or abus	may als e hose a e. Refer	so lead to assemblie to RMA II	prematu s; replac	re hose		Air & Multi- Purpose
"Welding Hos Warning! Grac any other fuel Couple with o	de R & gas. E	RM for Bleed ho	use with oses who	acetyle	ene gas	ONLY! D	O NOT u tes or lor	ise with nger.		Fire Suppression
This hose is for where separate Gas Associatio	welding lines a	g and cu re prefe	itting ope rable. Me	ets or ex	kceeds F	RMA and C	GA (Com	pressed	Ş	Food Handling
blooming and v 4:1 Design fact	váx free	Э.		п, туре	3 weiui	ng nose. T		5 11011-	â	Made To Order
Tube: Cover: Reinforcemen Temp. Range: Branding:		Ribbe Multip -40° F PARK		e Spirals ° F O 7120 '	; WELDIN	G ! WARNII			7120 WELDING! W	Material Handling
Brand Descrip	otion:	IP-7-9 INCH	99 STD E	DUTY GI LES MA	rade r .de in u	WP 200 PS COUPLE ISA (DATE	WITH ON		DING! WA	Petroleum Dispenser
Part No.	ID (in.)	ID (mm)	Reinf. Spirals	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP	19.	Petroleum Transport
-19200 -25200 -31200 -38200 -50200	3/16 1/4 5/16 3/8 1/2	4.8 6.4 7.9 9.5 12.7	22224	0.438 0.531 0.594 0.656 0.875	11.1 13.5 15.1 16.7 22.2	7 10 13 14 25	2.0 2.5 3.0 4.0 5.0	200 200 200 200 200 200		Petroleum LP Gas
LENGTHS: COUPLINGS:	couple Specia	ed assei al right l	mblies. hand or le	eft hand	threade	ece, 50 ft. d brass in:	serts and	crimp		Oil Field
		es-not a d separa		from Pa	rker/Day	co. Coupli	ngs not s	old or		Special Applications
										Steam
										Water
										Welding
										Couplings & Equipment
										Safety & Tech Data
										Chemical

Non-Conductive Cable Cover - Spiral

Series 7172

This hose has been designed for use as cable covering on water cooled welding systems. The specially blended non-conductive Nitrile tube and EPDM cover provide a minimum of 1 megohm resistance per inch at 1000 volts DC. The synthetic textile spiral reinforcement provides a lightweight product that can be used in many applications that require a non-conductive construction and 200 PSI working pressures.

4:1 Design factor

Tube:	
Cover:	
Reinforcement:	
Temp. Range:	
Branding:	

Black NBR Blend Black EPDM Textile spirals -20° F to +212° F None

Part No.	ID (in.)	ID (mm)	Reinf. Spirals	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
7172-19200	3/16	4.8	2	0.405	10.3	6	1.5	200
7172-25200	1/4	6.4	2	0.477	12.1	7	2.0	200
7172-31200	5/16	7.9	2	0.500	12.7	8	2.5	200
7172-38200	3/8	9.5	2	0.601	15.3	10	3.0	200

LENGTHS:

Exact length reels, 3/16 in. & 1/4 in. = 750 ft., 5/16 in. = 700 ft., 3/8 in.=650 ft. All reels have a +50 ft. /-0 ft. tolerance with 90% 1 piece, 10% 2 piece, with 50 ft. min. length.

COUPLINGS: Not supplied.

Oxygen Charging Hose Series 7293

Designed for lancing and scarfing applications in steel mills and foundries. This hose is made with high quality, flame resistant Neoprene rubber compounds that stand up to tough, oily environments. The green Neoprene cover is used to indicate color coding for oxygen. The tube is cleaned and the ends are capped at the factory. 4:1 Design factor

Part No.	ID (in.)	ID (mm)	Reinf. Plies	OD (in.)	OD (mm)	Approx. Wt. Per 100 Ft.	Min. Bend Radius	Max. Rec. WP
7293-0500	1/2	12.7	2 2 2 2 2 4	0.992	25.2	38	3.5	500
7293-0750	3/4	19.1		1.276	32.4	54	3.5	500
7293-1000	1	25.4		1.528	38.8	68	4.5	500
7293-1250	1 1/4	31.8		1.930	49.0	108	5.0	500
7293-1500	1 1/2	38.1		2.174	55.2	124	7.0	500
7293-2000	2	50.8		2.764	70.2	180	14.0	500

LENGTHS: COUPLINGS: 100 ft., lengths up to 200 ft. available on quotation. Non-sparking (brass) coupling style 2, 3, or for other coupling recommendations refer to NAHAD Assembly Guidelines. See Coupling Style Pages in the back of the catalog for coupling details.

Couplings

	page	series
DRAGON BREATH® Steam Couplings - Female Wing Nut		
DRAGON BREATH® Steam Adapters & O-Ring - Viton®		
DRAGON BREATH® Steam Couplings - Female Ultimate Grip Nut.	. 146	. 7613
Universal Type Couplings	. 147	. 7611
Interlocking Clamp Type Couplings	. 148	. 7615
Interlocking Clamps		
Barbed Inserts	. 150	. 7628
Petroleum Transfer Hose Couplings - Permanent	. 151	. 7657
Gasoline Vapor Recovery Hose Clamp		
PETROFLEX [®] 2000 O-Ring Replacement		
Crimp Couplings		
Combination Nipples		
EZ-FLO [®] Couplings - Plain Steel		
EZ-FLO [®] Couplings - 304 Stainless Steel		
EZ-FLO® Ferrules - 304 Stainless Steel or Plain Steel		
FLEX-EVER ULTIMATE [™] Active Vapor Recovery O-Ring Replacements		
Daylok [®] Beaded Hose Ends.		
Duck and Rubber Flanges		
-		

Note: The use of certain fitting and/or attachment styles reduces the maximum rated working pressure of the assembly to less than the maximum rated working pressure of the hose (Styles 1-7). Please confirm with the fitting and/or attachment supplier the maximum pressure rating for the fitting. For assembly working pressure guidelines, the NAHAD Assembly Guidelines should be used. Before selecting or using any Parker/Dayco Hose or Fittings or Related Accessories, it is important that you read the instructions in the "Parker Safety Guide for Selecting and Using Hose, Tubing, Fittings and Related Accessories", which can be found in this catalog.

Coupling	Parker/Dayco	Dixon Part	Dixon P/N -	Dixon P/N -	
Style	Part Number	Number	Brass	Stainless	UMI P/N
1	7611-250F	AMC1	ABC1	RAMC1	N/A
1	7611-250M	AMB1	ABB1	RAMB1	N/A
1	7611-250BE	AM0	AB0		
1	7611-250TC	AM10	AB10	N/A	N/A
1	7611-380E	AMH	ABH	RAMH	N/A
1	7611-380F	AMC	ABC	RAMC	N/A
1	7611-380M	AMB	ABB	RAMB	N/A
1	7611-380BE	AM0	AB0	RAM0	N/A
1	7611-380TC	AM10	AB10	N/A	N/A
1	7611-500E	AM1	AB1	RAM1	N/A
1	7611-500F	AM3	AB3	RAM3	N/A
1	7611-500M	AM2	AB2	RAM2	N/A
1	7611-500BE	AM0	AB0	RAM0	N/A
1	7611-500TC	AM10	AB10	N/A	N/A
1	7611-630E	AM5	AB5	RAM5	N/A
1	7611-750E	AM6	AB6	RAM6	N/A
1	7611-750F	AM8	AB8	RAM8	N/A
1	7611-750M	AM7	AB7	RAM7	N/A
1	7611-750BE	AMO	AB0	RAM0	N/A
1	7611-750TC	AM10	AB10	N/A	N/A
1	7611-1000E	AM11	AB11	RAM11	N/A
1	7611-1000F	AM13	AB13	RAM13	N/A
1	7611-1000M	AM12	AB12	RAM12	N/A
1	7611-1000BE	AMO	AB0	RAM0	N/A
1	7611-1000TC	AM10	AB10	N/A	N/A
2	7615-250FGJ	GF1	N/A	N/A	N/A
2	7615-250FW	N/A	N/A	N/A	N/A
	7615-250MJ	GBA	N/A	N/A	N/A
2 2 2	7615-250MW	N/A	N/A	N/A	N/A
2	7615-380FGJ	GF3	N/A	N/A	N/A
2	7615-380FW	WF3	N/A	N/A	N/A
2	7615-380MJ	GCA	N/A	N/A	N/A
2 2	7615-380MW	CA	N/A	N/A	N/A
2	7615-500FGJ	GF6	N/A	N/A	N/A
2	7615-500FW	WF6	N/A	N/A	N/A
2	7615-500MJ	GB1	N/A	N/A	N/A
2	7615-500MW	B1	N/A	N/A	N/A
	7615-750FGJ	GF26	N/A	N/A	N/A
2	7615-750FW	WF26	N/A	N/A	N/A
2 2 2 2	7615-750MJ	GB6	N/A	N/A	N/A
2	7615-750MW	B6	N/A	N/A	N/A
2	7615-1000FGJ	GF36	N/A	N/A	N/A
2	7615-1000FW	WF36	N/A	N/A	N/A
2	7615-1000MJ	GB11	N/A	N/A	N/A
2	7615-1000MW	B11	N/A	N/A	N/A

Coupling	Parker/Dayco	Dixon Part	Dixon P/N -	Dixon P/N -		Acid &
Style	Part Number	Number	Brass	Stainless	UMI P/N	Chemical
2	7615-1250FGJ	GF51	N/A	N/A	N/A	Chonnour
2	7615-1250FW	WF51	N/A	N/A	N/A	
2	7615-1250MJ	GB16	N/A	N/A	N/A	Air &
2	7615-1250MW	B16	N/A	N/A	N/A	Multi-
2	7615-1500FGJ	GF61	N/A	N/A	N/A	Purpose
2	7615-1500FW	WF61	N/A	N/A	N/A	
2	7615-1500MJ	GB21	N/A	N/A	N/A	
2	7615-1500MW	B21	N/A	N/A	N/A	Fire
2	7615-2000FGJ	GF81	N/A	N/A	N/A	Suppression
2	7615-2000FW	WF81	N/A	N/A	N/A	
2	7615-2000MJ	GB26	N/A	N/A	N/A	Food
2	7615-2000MW	B26	N/A	N/A	N/A	Handling
2	7615-2500FGJ	GF96	N/A	N/A	N/A	nanang
2	7615-2500FW	WF96	N/A	N/A	N/A	
2	7615-2500MJ	GB31	N/A	N/A	N/A	Made
2	7615-2500MW	B31	N/A	N/A	N/A	То
2	7615-3000FGJ	GF111	N/A	N/A	N/A	Order
2	7615-3000FW	WF111	N/A	N/A	N/A	
2	7615-3000MJ	GB36	N/A	N/A	N/A	
2	7615-3000MW	B36	N/A	N/A	N/A	Material
2	7615-4000FGJ	GF141	N/A	N/A	N/A	Handling
2	7615-4000FW	WF141	N/A	N/A	N/A	
2	7615-4000MJ	GB46	N/A	N/A	N/A	Petroleum
2	7615-4000MW	B46	N/A	N/A N/A	N/A N/A	Dispenser
2	7615-400010100	D40	IN/A	I IN/A	IN/A	Dishelisei
	7692-251	BD	N/A	N/A	N/A	
3		CD				Petroleum
3	7692-381		N/A	N/A	N/A	Transport
3	7692-501	DD	N/A	N/A	N/A	•
3	7692-502	B4	BB4	RB4	N/A	
3	7692-503	B5	N/A	N/A	N/A	Petroleum
3	7692-751	BU9	BBU9	RBU9	N/A	LP Gas
3	7692-752	B9	BB9	RB9	N/A	
3	7692-753	B10	BB10		N/A	<u></u>
3	7692-1001	BU14	BBU14	RBU14	N/A	Oil Field
3	7692-1002	B14	BB14	RB14	N/A	
3	7692-1003	B15	N/A	N/A	N/A	Special
3	7692-1251	B19	BB19	RB19	N/A	Applications
3	7692-1252	BU19	N/A	N/A	N/A	πμμισατιστιο
3	7692-1501	BU24	BBU24	RBU24	N/A	
3	7692-1502	B24	BB24	RB24	N/A	Steam
3	7692-1503	B25	N/A	N/A	N/A	
3	7692-2001	BU29	BBU29	RBU29	N/A	
3	7692-2002	B29	BB29	RB29	N/A	Water
3	7692-2003	B30	N/A	N/A	N/A	
3	7692-2501	B34	N/A	N/A	N/A	
3	7692-3001	B35	N/A	N/A	N/A	Welding
3	7692-3002	B39	N/A	N/A	N/A	
3	7692-4001	BS49	N/A	N/A	N/A	Couplingo
3	7692-4002	N/A	N/A	N/A	N/A	Couplings &
		1.1// 1				∝ Equipment
4	7625-750 - To be Discontinued	N/A	N/A	N/A	N/A	Equipment
4	7625-751 - To be Discontinued	N/A N/A	N/A N/A	N/A N/A	N/A N/A	
	7625-1001 - To be Discontinued	N/A N/A	N/A N/A	N/A N/A	N/A N/A	Safety &
	7625-1001 - To be Discontinued				N/A N/A	Tech Data
4	1025-1002 - 10 be Discontinued	N/A	N/A	N/A	IN/A	

Coupling	Parker/Dayco	Dixon Part	Dixon P/N -	Dixon P/N -	
Style	Part Number	Number	Brass	Stainless	UMI P/N
5	7628-191M	BN152	BN152	N/A	N/A
5	7628-192M	BN151	BN151	N/A	N/A
5	7628-251M	BN21	BN21	RN21	N/A
5	7628-252M	BN22	BN22	RN22	N/A
5	7628-253M	BN23	BN23	RN23	N/A
5	7628-311M	BN252	BN252	N/A	N/A
5	7628-381M	BN31	BN31	N/A	N/A
5	7628-382M	BN32	BN32	RN32	N/A
5	7628-383M	BN33	BN33	RN33	N/A
5					
	7628-501M	BN42	BN42	RN42	N/A
5	7628-502M	BN43	BN43	RN43	N/A
5	7628-503M	BN44	BN44	RN44	N/A
5	7628-751M	BN66	BN66	RN66	N/A
5	7628-1001M	BN88	BN88	RKHN881	N/A
		i			
6	7657-752F	H5191	Std. Is Brass	N/A	N/A
6	7657-751M	H5192	Std. Is Brass	N/A	N/A
6	7657-1002F	H5211	Std. Is Brass	N/A	100F
6	7657-1001M	H5212	Std. Is Brass	N/A	100M
6	7657-1252F	H5221	Std. Is Brass	N/A	125F
6	7657-1251M	H5222	Std. Is Brass	N/A	125M
6	7657-1382F	H5271	Std. Is Brass	N/A	137F
6	7657-1381M	H5272	Std. Is Brass	N/A	137M
6	7657-1502F	H5231	Std. Is Brass	N/A	150F
6	7657-1501M	H5232	Std. Is Brass	N/A	150M
6	7657-2002F	H5241	Std. Is Brass	N/A	200F
6	7657-2002F	H5242	Std. Is Brass	N/A N/A	200F 200M
6	7657-2502F	H5251	Std. Is Brass	N/A	250F
6	7657-2501M	H5252	Std. Is Brass	N/A	250M
6	7657-3002F	H5261	Std. Is Brass	N/A	300F
6	7657-3001M	H5262	Std. Is Brass	N/A	300M
6	7657-4002F	H5281	Std. Is Brass	N/A	400F
6	7657-4001M	H5282	Std. Is Brass	N/A	400M
r					
7	7670-501	STC1	N/A	RST1	N/A
7	7670-751	STC5	N/A	RST5	N/A
7	7670-1001	STC10	N/A	RST10	N/A
7	7670-1251	STC15	N/A	RST15	N/A
7	7670-1501	STC20	N/A	RST20	N/A
7	7670-2001	STC25	N/A	RST25	N/A
7	7670-2501	STC30	N/A	RST30	N/A
7	7670-3001	STC35	N/A	RST35	N/A
7	7670-4001	STC40	N/A	RST40	N/A
7	7670-5001	STC50	N/A	RST50	N/A
7	7670-5001	STC60	N/A N/A	RST60	N/A
7	7670-8001	STC80	N/A N/A	RST80	N/A
7	7670-10001				
1	7070-10001	STC1001	N/A	N/A	N/A
8	Soo the CrimpSource Dreament	for the meet e	ront rocommer	dationa and and	oifications
8	See the CrimpSource Program	for the most cu	rrent recommen	dations and spe	ecilications.
9	Parker/Dayco series KA or 82				
10	7672	No Equivalent			
		- 			
11	7676	No Equivalent			
		•			-
12	7613	No Equivalent			

13	7610	No Equivalent				
14	7674	No Equivalent				Acid & Chemical
15 See Parker/Dayco Industrial Hose with Dixon and Ever-tite current Coupling recommendations and specifications.					Air &	
Dixon Valve & Coupling Co						Multi- Purpose

Dixon Valve & Coupling Co. 800 High Street Chestertown, MD 21620 Toll Free: 800-355-1991

United Metal Industries, Inc. 1008 3rd Avenue New Hyde Park, NY 11040 Toll Free: 800-359-6801

> Made To Order

Fire

Suppression

Food Handling

Material Handling

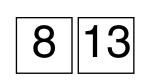
Petroleum Dispenser

Petroleum Transport

Petroleum LP Gas

Oil Field

Special Applications


Steam

Water

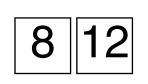
Welding

Couplings & Equipment

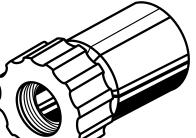
Safety & Tech Data

DRAGON BREATH® Steam Couplings Series 7610

FEMALE WING NUT


Service:High pressure air, water and steam.Description:One piece ferrule and stem with machined
ductile iron female wing nut. NPSM thread with
Ground Joint O-Ring Seal.Attachment:Permanent Crimp, contact Parker/Dayco for
crimp specifications.

Hose ID	Thread Female	Part No.
1/2	1" NPSM	7610-8BWGJF
3/4	1-1/2" NPSM	7610-12BWGJF
1	1-1/2" NPSM	7610-16BWGJF



7612-VITON-OR Viton is a registered trademark of DuPont/Dow.

DRAGON BREATH[™] **Steam Couplings** Series 7613 FEMALE ULTIMATE GRIP NUT

High pressure air, water and steam. Service: **Description:** One piece ferrule and stem with machined ductile iron female ultimate grip nut. NPSM thread with Ground Joint O-Ring Seal. Attachment: Permanent Crimp, contact Parker/Dayco for crimp specifications. Refer to Parker/Dayco Industrial Hose Crimp

Specifications for BW coupling crimp specifications.

Hose ID	Thread Female	Part No.
1/2	1" NPSM	7613-8BWGJF
3/4	1-1/2" NPSM	7613-12BWGJF
1	1-1/2" NPSM	7613-16BWGJF

Universal T Series 7611 PLATED MALL	ype Couplings EABLE IRON	Acid & Chemical
C		Air & Multi- Purpose
Ø	E M F BE TC	Fire Suppression
Service:	For low pressure air, water, and other service requiring quick or frequent connections.	Food Handling
Descriptions	WARNING! Not For Steam Service! WARNING! Not recommended for applications above 110 PSI working pressure!	Made To Order
Description:	Plated malleable iron. Several type ends available for connection to hose, NPT male and female connections, blanks for sealing, and triple connectors.	Material Handling
Attachment: Manufacturer:	Interlocking clamp series 7692. Dixon Valve & Coupling	Petroleum Dispenser
BE = Blank End E = Hose End F = Female End		Petroleum Transport
M = Male End NG = Neoprene (Gasket	Petroleum LP Gas
TC = Triple Conn	ection Extra	Oil Field

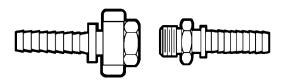
Hose ID (in.)	Hose End	Female End	Male End	Blank End	Triple Connection	Extra Neoprene Gaskets
1/4	N/A	-250F	-250M	-250BE	-250TC	
3/8	-380E	-380F	-380M	-380BE	-380TC	
1/2	-500E	-500F	-500M	-500BE	-500TC	<u> </u>
3/4	-750E	-750F	-750M	-750BE	-750TC	<u> </u>
1	-1000E	-1000F	-1000M	-1000BE	N/A	-1000NG

Welding

Special Applications

Steam

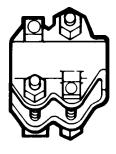
Water


Couplings & Equipment

Safety & Tech Data

Interlocking Clamp Type Couplings Series 7615 PLATED MALLEABLE IRON/STEEL

High pressure air, water, steam, petroleum products, and chemicals.



Service:	High pressure air, water, steam, petroleum products, and chemicals.
Description:	Plated malleable iron wing nut with either malleable iron or steel stem and spud. NPT male and NPT female spud. Female wing nut-to-spud connection is NPSM ground joint or washer seal.
Attachment: Manufacturer:	Interlocking clamp series 7692. Dixon Value & Coupling

Hose ID (in.)	NPT Thread Size (in.)	Female Ground Joint	Female Washer Type	Male For Either Female
1/4	1/4	-250FGJ	-250FW	-250M
3/8	3/8	-380FGJ	-380FW	-380M
1/2	1/2	-500FGJ	-500FW	-500M
3/4	3/4	-750FGJ	-750FW	-750M
1	1	-1000FGJ	-1000FW	-1000M
1 1/4	1 1/4	-1250FGJ	-1250FW	-1250M
1 1/2	1 1/2	-1500FGJ	-1500FW	-1500M
2	2	-2000FGJ	-2000FW	-2000M
2 1/2	2 1/2	-2500FGJ	-2500FW	-2500M
3	3	-3000FGJ	-3000FW	-3000M
4	4	-4000FGJ	-4000FW	-4000M

Interlocking Clamps Series 7692 PLATED MALLEABLE IRON

Acid & Chemical

Air & Multi-Purpose

Fire Suppression

> Food Handling

> > Made To Order

Material Handling

Petroleum
Dispenser

Petroleum Transport

Petroleum LP Gas

Oil Field

Special Applications

Steam

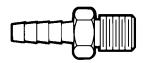
Water

Welding

& Equipment

Safety & **Tech Data**

Chemical Charts


For attaching high pressure coupling series 7611, 7615. Service: **Description:** Plated malleable iron, 2, 4 and 6 bolt configuration. Manufacturer: **Dixon Valve & Coupling** Torque **Specifications:**

Contact Dixon Valve & Coupling

Hose ID (in.)	Hose OD (in.) From	Hose OD (mm) From	Hose OD (in.) To	Hose OD (mm) To	Bolts	Part No.
1/4	9/16	14.3	21/32	16.7	2	-251
3/8	21/32	16.7	13/16	20.6	2	-381
1/2	13/16	20.6	1 15/16	23.8	2	-501
1/2	15/16	23.8	1 1/16	27.0	2	-502
1/2	1 1/16	27.0	1 3/16	30.2	2	-503
3/4	1 3/16	30.2	1 5/16	33.3	2	-751
3/4	1 5/16	33.3	1 1/2	38.1	2	-752
3/4	1 1/2	38.1	1 11/16	42.9	2	-753
1	1 17/32	38.9	1 23/32	43.7	4	-1001
1	1 11/16	42.9	1 27/32	46.8	4	-1002
1	1 7/8	47.6	2 1/16	52.4	4	-1003
1 1/4	2 1/16	52.4	2 1/4	57.2	4	-1251
1 1/4	1 25/32	45.2	2 3/32	53.2	4	-1252
1 1/2	2 3/32	53.2	2 9/32	57.9	4	-1501
1 1/2	2 1/4	57.2	2 7/16	61.9	4	-1502
1 1/2	2 15/32	62.7	2 23/32	69.1	4	-1503
2	2 1/2	63.5	2 25/32	70.6	4	-2001
2	2 3/4	69.9	3 1/16	77.8	4	-2002
2	3 3/32	78.6	3 7/16	87.3	4	-2003
2 1/2	3 1/2	88.9	3 15/16	100.0	4	-2501
3	3 13/16	96.8	4 3/16	106.4	4	-3001
3	4 1/16	103.2	4 7/16	112.7	4	-3002
4	4 7/8	123.8	5 5/16	134.9	6	-4001
4	5 1/8	130.2	6 3/16	157.2	6	-4002

Barbed Inserts Series 7628 MACHINED BRASS

Service:	Low to medium pressure, air, water and general purpose.
Description:	Machined brass, serrated shank. NPTF dryseat male.
Attachment:	Ferrule, band or clamp.

M = Male

Part No.	Hose ID (in.)	Thread Size (in.)
7628-191M	3/16	1/4
7628-192M	3/16	1/8
7628-251M	1/4	1/8
7628-252M	1/4	1/4
7628-253M	1/4	3/8
7628-311M	5/16	1/4
7628-381M	3/8	1/8
7628-382M	3/8	1/4
7628-383M	3/8	3/8
7628-501M	1/2	1/4
7628-502M	1/2	3/8
7628-503M	1/2	1/2
7628-751M	3/4	3/4
7628-1001M	1	1

Petroleum Transfer Hose Couplings - Permanent Series 7657 BRASS

serrated brass.

Hose

ID

(in.)

3/4

3/4

1

1

1 1/4

1 1/4

1 3/8

1 3/8

 $1 \frac{1}{2}$

 $1 \frac{1}{2}$

2

2

2 1/2

21/2

3

3

4

4

ferrule size is supplied).

M = Male

Service:

Description:

Attachment:

Part No.

7657-752F

7657-751M

7657-1002F

7657-1001M

7657-1252F

7657-1251M

7657-1382F

7657-1381M

7657-1502F

7657-1501M 7657-2002F

7657-2001M

7657-2502F 7657-2501M

7657-3002F

7657-3001M

7657-4002F

7657-4001M

F = Female

Low to medium pressure, permanent, for use with tank truck and aircraft refueling hoses.

Brass with serrated stem NPSH female swivel,

gasket seal, NPT male. Ferrules are internally

Stem is internally expanded to provide compression

of the hose between the insert and the ferrule.

(Hose ID size is required with order so that correct

Thread

Size

(in.)

3/4

3/4

1

1

1 1/4

1 1/4

1 1/2

1 1/2

 $1 \frac{1}{2}$

 $1 \frac{1}{2}$

2

2

2 1/2

2 1/2

3

3

4

4

Acid &	
Chemical	

Air & Multi-Purpose

Fire Suppression

> Food Handling

> Made

To Order

Material Handling

Petroleum Dispenser

Petroleum Transport

Petroleum LP Gas

Oil Field

Special Applications

Steam

Water

Welding

Couplings & Equipment

Safety & Tech Data

NOTE:	Ferrule	included	in	part	numbers	above.
	i on alo	monaaoa		puit	Indinisoro	ub010.

1	5	1
	Э	

Gasoline Vapor Recovery Hose Clamp Series 7658 INJECTION MOLDED PLASTIC

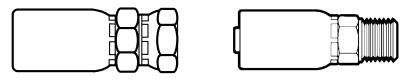
Service:	For use with PETROFLEX [®] 2000 co-axial vapor recovery hose system where retractor cables are required.
Description:	Injection molded high impact plastic external "clamshell" design with 2-piece internal clamp halves, 4 metal screws and 1 metal bolt with nut.
Attachment:	Clamp halves placed over outer hose, 4 screws inserted and tightened. External clamshell placed over halves and bolt and nut secured.
NOTE:	For use with Series 7574 PETROFLEX [®] 2000 vapor recovery hose only.

Hose ID (in.)	Part No.
1 1/2	7658-0017

PETROFLEX® 2000 **O-Ring Replace** Series 7658

Service:

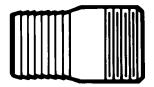
Part No.


7658-70

Replacement	Acid & Chemical
	Air & Multi- Purpose
	Fire Suppression
	Food Handling
	Made
Replacement O-Ring for the 7574 PETROFLEX [®] 2000 Balance Vapor Recovery system's large swivel nut.	To Order
Std. Pack	Material Handling
100	Petroleum Dispenser
	Petroleum Transport
	Petroleum LP Gas
	Oil Field
	Special Applications
	Steam
	Water
	Welding
	Couplings & Equipment
	Safety & Tech Data
	Chemical Charts

8

Crimp Couplings Series 7661


Service:	Designed for industrial hose applications that
Description	require maximum coupling retention.
Description:	Zinc Plated

Part No.	Hose ID (in.)	Thread Size & Style
7661-04FF04TY 7661-04FJ04TY 7661-04FN04TY 7661-04MP04TY 7661-05FJ04TY 7661-06FA04TY 7661-06MP08TY 7661-08FJ08TY 7661-08MP08TY	1/4 1/4 1/4 1/4 1/4 1/4 1/2 1/2 1/2	1/4-18 NPTF Rigid Female 7/16-20 JIC Swivel Female 1/4-18 NPSM Swivel Female 1/4-18 NPTF Rigid Male 1/2-20 JIC Swivel Female 5/8-18 SAE Swivel Female 3/8-18 NPTF Rigid Male 3/4-16 JIC Swivel Female 1/2-14 NPTF Rigid Male
7661-08SP08TY 7661-10FJ08TY 7661-12MP08TY 7661-16FJ16LAR 7661-16MP16LAR 7661-32NP32LA 7661-32FJ32LA	1/2 1/2 1 1 2 2	1/2-14 JIC Swivel Male 7/8-14 JIC Swivel Female 3/4-14 NPTF Rigid Male 1-5/16-12 JIC Swivel Female 1-11-1/2 NPTF Rigid Male 2-11-1/2 NPTF Rigid 2-1/2-12 JIC Swivel Female

Note: The crimp specification uses the suffix of the part number (i.e. - TY, LA, LAR) to access crimping information.

Combination Nipples Series 7670 PLATED STEEL

-

Service:	Low to medium pressure suction and discharge of water, fluids and material handling.
Description:	Plated steel, serrated shank, NPT male threads.
Attachment:	Clamps or bands.

Hose ID	Thread Size	
(in.)	(in)	Part No.
1/2	1/2	-501
3/4	3/4	-751
1	1	-1001
1 1/4	1 1/4	-1251
1 1/2	1 1/2	-1501
2	2	-2001
2 1/2	2 1/2	-2501
3	3	-3001
4	4	-4001
5	5	-5001
6	6	-6001
8	8	-8001
10	10	-10001

Fire Suppression

Acid &

Chemical

Air & Multi-Purpose

Food Handling

> Made To Order

Material Handling

Petroleum Dispenser

Petroleum Transport

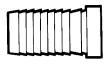
Petroleum LP Gas

Oil Field

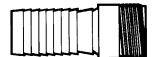
Special Applications

Steam

Water


Welding

Couplings & Equipment


Safety & Tech Data

EZ-FLO[®] Couplings Series 7672 PLAIN STEEL

Blank Weld-On

Grooved Coupling

Male Pipe Thread

Service:	Internally expandand couplings that handle low, medium, and high pressure critical applications where full flow is required.
Description:	Tubular steel designed for full flow service and easy installation.
Attachment:	Insert is internally expanded to provide pressure against hose and ferrule Series 7676.

Hose ID (in.)	Blank Weld-On	Grooved California End	Male Pipe Thread
1 1/2	-150BW*	-150G*	-150NPT
2	-200BW*	-200G	-200NPT
2 1/2	-250BW*	-250G	-250NPT*
3	-300BW*	-300G	-300NPT
4	-400BW*	-400G*	-400NPT

*Note: Non-stock (contact Parker/Dayco for minimum order quantity and availability)

EZ-FLO® Couplings Series 7674 **304 STAINLESS STEEL**

Acid & Chemical

Air & Multi-Purpose

Fire Suppression

> Food Handling

> > Made To Order

Material

Handling

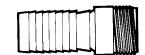
Petroleum Dispenser

Petroleum Transport

Petroleum LP Gas

Oil Field

Special **Applications**


Steam

Water

Welding

Couplings

Equipment

DAIRY BEVELED SEAT COWLSE

MALE HOSE SHANK MALE PIPE THREAD NPT

ACME

BLANK WELD-ON BW

NUT

AN

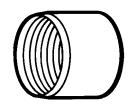
TUBE END FOR STAINLESS TUBING

Service:	Low, medium and high pressure permanent design for critical applications associated with food, beverages and chemicals. Parker/Dayco's food hoses can mate with most systems used for sanitary requirements. (Wineries, breweries, pharmaceutical, milk etc.)
Description:	Internally expanded couplings that handle low, medium, and high pressure applications that require full flow with food, beverages, and chemicals. Parker/Dayco's food hoses can mate with most systems used for sanitary requirements. (Wineries, breweries, pharmaceutical, milk, etc.)
Attachment:	Insert is internally expanded to provide pressure against hose and ferrule series 7676.

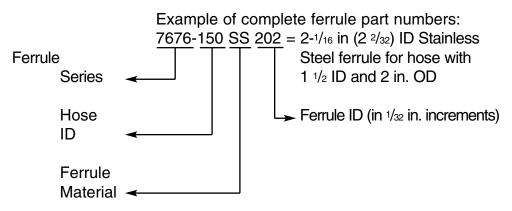
Part No.	Hose ID (in.)	Part No.	Hose ID (in.)	Part No.	Hose ID (in.)	_
7674-1501AN	1 1/2	7674-2001NPT	2	7674-1501COWLSE	1 1/2	
7674-2001AN	2	7674-3001NPT	3	7674-2001COWLSE	2	_
7674-2501AN*	2 1/2			7674-2501COWLSE	2 1/2	
7674-3001AN*	3			7674-3001COWLSE	3	
7674-4001AN*	4			7674-4001COWLSE	4	-
7674-1501BW*	1 1/2	7674-1500SE	1 1/2	7674-1501TESE	1 1/2	
7674-2001BW*	2	7674-2000SE	2	7674-2001TESE	2	
7674-2501BW*	2 1/2	7674-2500SE	2 1/2	7674-2501TESE	2 1/2	
7674-3001BW*	3	7674-3000SE	3	7674-3001TESE	3	
7674-4001BW*	4			7674-4001TESE	4	

Safety & **Tech Data**

> Chemical Charts



TESE



EZ-FLO® Ferrules

Series 7676 304 Stainless or Plain Steel

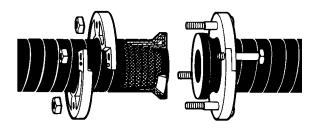
Service:	Ferrules used with internally expanded insert
Service.	, , , , , , , , , , , , , , , , , , ,
	couplings, see 7672 and 7674. The 5 in. and 6 in.
	stainless steel ferrules are available upon
	request. Contact Customer Service. Subject to
	minimum runs.
Description:	Plain steel, stainless steel. Sizes must be
	specified, based on measured hose OD (see
	instruction manual for proper ferrule selection).
Note:	Measure with OD tape.
Attachment:	Ferrule is slipped over hose OD and insert is
	internally expanded.

Ferrule Size Instructions

Note: ID of the ferrules should be approximately 1/32 in. larger than the hose OD (for non-helix reinforced hoses) and not mechanically forced onto hose - If ferrule is tight, select the next available larger ID size. For hose with helix wire, add 2/32 in. to ferrule size. If proper size ferrule is not utilized, then there is a potential of a hose failure that can cause property damage and bodily harm.

Plain Steel			
Part No.	Hose ID (in.)	Part No.	Hose ID (in.)
7676-150PS* 7676-200PS* 7676-250PS* 7676-300PS* 7676-400PS* 7676-500PS*	1 1/2 2 2 1/2 3 4 5	7676-150SS* 7676-200SS* 7676-250SS* 7676-300SS* 7676-400SS*	1 1/2 2 2 1/2 3 4
7676-500PS* 7676-600PS*	5		

*Add ferrule size - 3 digits - for correct part number, per example of part number above.


ACTIVE	EVER ULTIMATE E VAPOR RECO B REPLACEMEN 584	VERY	-	Acid & Chemical Air & Multi- Purpose Fire Suppression Food Handling Made To Order
Service:	Replacement O-Rings FLEX-EVER [™] ULTIMA recovery system.	for Series 7246 and 72 TE VR active vapor	- 53	Material Handling
Part No.	Location	Std. Pack	-	Petroleum Dispenser
-0006AC -0008AC	Inner Hose Insert Ridgid or Swivel Nut	100 100		Petroleum Transport
			-	Petroleum LP Gas
			-	Oil Field
			_	Special Applications
			-	Steam
			-	Water
				Welding
				Couplings & Equipment
			-	Safety & Tech Data
				Chemical Charts

Daylok[®] Beaded Hose Ends*

DAYLOK[®] beaded ends may be ordered only with hand-built wrapped ply hose style with a smooth bore. They are normally used on hoses handling chemicals and abrasive materials. Split rings provide quick and convenient hose rotation for longer life in transmitting abrasive materials. Bolt holes may be quickly aligned with this type backup ring. DAYLOK beaded ends are not recommended for service over 150 PSI. They are available on hose ID sizes 2 in. through 12 in.

*Contact Customer Service for price & availability.

Note: These are built into hoses only-not sold or quoted separately.

Duck and Rubber Flanges*

Duck and Rubber Flanges are available on some hand-built, wrapped ply construction hose with a smooth bore from 2 in. to 12 in. ID. The flanged ends provide a liquid tight seal when bolted to a mating flange. The one piece backup ring does not come in contact with the material being carried by the hose. Specify drilling arrangement when ordering.

*Contact Customer Service for price & availability.

Note: These are built into hoses only-not sold or quoted separately.

Acid & Chemical
Air & Multi- Purpose
Fire Suppression
Food Handling
Made To Order
Material Handling
Petroleum Dispenser
Petroleum Transport
Petroleum LP Gas
Oil Field
Special Applications
Steam
Water
Welding
Couplings & Equipment
Safety & Tech Data

Couplings and Equipment

Safety and Technical Data

	page
Safety	164-169
RMA Publications	
Hose Constructions	171-172
Temperature Conversion	173
Flexibility and Bend Radius	174
Oil Resistance Definition	
Metric Interchange Linear	175
Metric Pressure Conversion Chart	176
Vacuum Conversion Chart	176
Pressure Conversion Table	-
Conversion Factors	177-179
Coupling Thread Compatibility	180
Dimensions of Seamless and Welded Steel Pipe	181

Parker Safety Guide for Selecting and Using Hose, Tubing, Fittings and Related Accessories Parker Publication No. 4400-B.1 Pavinged, May 2002

Revised: May, 2002

WARNING: Failure or improper selection or improper use of hose, tubing, fittings, assemblies or related accessories ("Products") can cause death, personal injury and property damage. Possible consequences of failure or improper selection or improper use of these Products include but are not limited to:

- Fittings thrown off at high speed.
- High velocity fluid discharge.
- Explosion or burning of the conveyed fluid.
- Electrocution from high voltage electric powerlines.
- Contact with suddenly moving or falling objects that are controlled by the conveyed fluid.
- Injections by high-pressure fluid discharge.
- Dangerously whipping Hose.
- · Contact with conveyed fluids that may be hot, cold, toxic or otherwise injurious.
- Sparking or explosion caused by static electricity buildup or other sources of electricity.
- Sparking or explosion while spraying paint or flammable liquids.
- Injuries resulting from inhalation, ingestion or exposure to fluids.

Before selecting or using any of these Products, it is important that you read and follow the instructions below. Only Hose from Parker's Stratoflex Products Division is approved for in flight aerospace applications, and no other Hose can be used for such in flight applications.

1.0 GENERAL INSTRUCTIONS

1.1 Scope: This safety guide provides instructions for selecting and using (including assembling, installing, and maintaining) these Products. For convenience, all rubber and/or thermoplastic products commonly called "hose" or "tubing" are called "Hose" in this safety guide. All assemblies made with Hose are called "Hose Assemblies". All products commonly called "fittings" or "couplings" are called "Fittings". All related accessories (including crimping and swaging machines and tooling) are called "Related Accessories". This safety guide is a supplement to and is to be used with, the specific Parker publications for the specific Hose, Fittings and Related Accessories that are being considered for use.

1.2 Fail-Safe: Hose, and Hose Assemblies and Fittings can and do fail without warning for many reasons. Design all systems and equipment in a fail-safe mode, so that failure of the Hose or Hose Assembly or Fitting will not endanger persons or property.

1.3 Distribution: Provide a copy of this safety guide to each person that is responsible for selecting or using Hose and Fitting products. Do not select or use Parker Hose or Fittings without thoroughly reading and understanding this safety guide as well as the specific Parker publications for the products considered or selected.

1.4 User Responsibility: Due to the wide variety of operating conditions and applications for Hose and Fittings, Parker and its distributors do not represent or warrant that any particular Hose or Fitting is suitable for any specific end use system. This safety guide does not analyze all technical parameters that must be considered in selecting a product. The user, through its own analysis and testing, is solely responsible for:

- Making the final selection of the Hose and Fitting.
- Assuring that the user's requirements are met and that the application presents no health or safety hazards.
- Providing all appropriate health and safety warnings on the equipment on which the Hose and Fittings are used.
- Assuring compliance with all applicable government and industry standards.

1.5 Additional Questions: Call the appropriate Parker technical service department if you have any questions or require any additional information. See the Parker publication for the product being considered or used, or call 1-800-CPARKER, or go to www.parker.com, for telephone numbers of the appropriate technical service department.

2.0 HOSE AND FITTING SELECTION INSTRUCTIONS

2.1 Electrical Conductivity: Certain applications require that the Hose be nonconductive to prevent electrical current flow. Other applications require the Hose and the Fitting and the Hose/Fitting interface to be sufficiently conductive to drain off static electricity. Extreme care must be exercised when selecting Hose and Fittings for these or any other applications in which electrical conductivity or nonconductivity is a factor.

The electrical conductivity or nonconductivity of Hose and Fittings is dependent upon many factors and may be susceptible to change. These factors include but are not limited to the various materials used to make the Hose and the Fittings, Fitting finish (some Fitting finishes are electrically conductive while others are nonconductive), manufacturing methods (including moisture control), how the Fittings contact the Hose, age and amount of deterioration or damage or other changes, moisture content of the Hose at any particular time, and other factors.

The following are considerations for electrically nonconductive and conductive Hose. For other applications consult the individual catalog pages and the appropriate industry or regulatory standards for proper selection.

2.1.1 Electrically Nonconductive Hose: Certain applications require that the Hose be nonconductive to prevent electrical current flow or to maintain electrical isolation. For these applications that require Hose to be electrically nonconductive, including but not limited to applications near high voltage electric lines, only special nonconductive Hose can be used. The manufacturer of the equipment in which the nonconductive Hose is to be used must be consulted to be certain that the Hose and Fittings that are selected are proper for the application. Do not use any Parker Hose or Fitting for any such application requiring nonconductive Hose, including but not limited to applications near high voltage electric lines, unless (i) the application is expressly approved in the Parker technical publication for the product, (ii) the Hose is marked "nonconductive", and (iii) the manufacturer of the equipment on which the Hose is to be used specifically approves the particular Parker Hose and Fitting for such use.

2.1.2 Electrically Conductive Hose: Parker manufacturers special Hose for certain applications that require electrically conductive Hose.

Parker manufactures special Hose for conveying paint in airless paint spraying applications. This Hose is labeled "Electrically Conductive Airless Paint Spray Hose" on its layline and packaging. This Hose must be properly connected to the appropriate Parker Fittings and properly grounded in order to dissipate dangerous static charge buildup, which occurs in all airless paint spraying applications. Do not use any other Hose for airless paint spraying, even if electrically conductive. Use of any other Hose or failure to properly connect the Hose can cause a fire or an explosion resulting in death, personal injury, and property damage.

Parker manufactures a special Hose for certain compressed natural gas ("CNG") applications where static electricity buildup may occur. Parker CNG Hose assemblies comply with AGA Requirements 1-93, "Hoses for Natural Gas Vehicles and Fuel Dispensers". This Hose is labeled "Electrically Conductive for CNG Use" on its layline and packaging. This Hose must be properly connected to the appropriate Parker Fittings and properly grounded in order to dissipate dangerous static charge buildup, which occurs in, for example, high velocity CNG dispensing or transfer. Do not use any other Hose for CNG applications where static charge buildup may occur, even if electrically conductive. Use of other Hoses in CNG applications or failure to properly connect or ground this Hose can cause a fire or an explosion resulting in death, personal injury, and property damage. Care must also be taken to protect against CNG permeation through the Hose wall. See section 2.6, Permeation, for more information. Parker CNG Hose is intended for dispenser and vehicle use at a maximum temperature of 180°F. Parker CNG Hose should not be used in confined spaces or unventilated areas or areas exceeding 180°F. Final assemblies must be tested for leaks. CNG Hose Assemblies should be tested on a monthly basis for conductivity per AGA 1-93. Parker manufacturers special Hose for aerospace in flight applications. Aerospace in flight applications employing Hose to transmit fuel, lubricating fluids and hydraulic fluids require a special Hose with a conductive inner tube. This Hose for in flight applications is available only from Parker's Stratoflex Products Division. Do not use any other Parker Hose for in flight applications, even if electrically conductive. Use of other Hoses for in flight applications or failure to properly connect or ground this Hose can cause a fire or an explosion resulting in death, personal injury , and property damage. These Hose assemblies for in flight applications must meet all applicable aerospace industry, aircraft engine, and aircraft requirements.

2.2 Pressure: Hose selection must be made so that the published maximum recommended working pressure of the Hose is equal to or greater than the maximum system pressure. Surge pressures or peak transient pressures in the system must be below the published maximum working pressure for the Hose. Surge pressures and peak pressures can usually only be determined by sensitive electrical instrumentation that measures and indicates pressures at millisecond intervals. Mechanical pressure gauges indicate only average pressures and cannot be used to determine surge pressures or peak transient pressures. Published burst pressure ratings for Hose is for manufacturing test purposes only and is no indication that the Product can be used in applications at the burst pressure or otherwise above the published maximum recommended working pressure.

2.3 Suction: Hoses used for suction applications must be selected to insure that the Hose will withstand the vacuum and pressure of the system. Improperly selected Hose may collapse in suction application.

2.4 Temperature: Be certain that fluid and ambient temperatures, both steady and transient, do not exceed the limitations of the Hose. Temperatures below and above the recommended limit can degrade Hose to a point where a failure may occur and release fluid. Properly insulate and protect the Hose Assembly when routing near hot objects (e.g. manifolds). Do not use any Hose in any application where failure of the Hose could result in the conveyed fluids (or vapors or mist from the

conveyed fluids) contacting any open flame, molten metal, or other potential fire ignition source that could cause burning or explosion of the conveyed fluids or vapors.

2.5 Fluid Compatibility: Hose Assembly selection must assure compatibility of the Hose tube, cover, reinforcement, and Fittings with the fluid media used. See the fluid compatibility chart in the Parker publication for the product being considered or used. This information is offered only as a guide. Actual service life can only be determined by the end user by testing under all extreme conditions and other analysis.

Hose that is chemically compatible with a particular fluid must be assembled using Fittings and adapters containing likewise compatible seals.

Permeation: Permeation (that is, seepage 2.6 through the Hose) will occur from inside the Hose to outside when Hose is used with gases, liquid and gas fuels, and refrigerants (including but not limited to such materials as helium, diesel fuel, gasoline, natural gas, or LPG). This permeation may result in high concentrations of vapors which are potentially flammable, explosive, or toxic, and in loss of fluid. Dangerous explosions, fires, and other hazards can result when using the wrong Hose for such applications. The system designer must take into account the fact that this permeation will take place and must not use Hose if this permeation could be hazardous. The system designer must take into account all legal, government, insurance, or any other special regulations which govern the use of fuels and refrigerants. Never use a Hose even though the fluid compatibility is acceptable without considering the potential hazardous effects that can result from permeation through the Hose Assembly. Permeation of moisture from outside the Hose to inside the Hose will also occur in Hose assemblies, regardless of internal pressure. If this moisture permeation would have detrimental effects (particularly, but not limited to refrigeration and air conditioning systems), incorporation of sufficient drying capacity in the system or other appropriate system safeguards should be selected and used.

2.7 Size: Transmission of power by means of pressurized fluid varies with pressure and rate of flow. The size of the components must be adequate to keep pressure losses to a minimum and avoid damage due to heat generation or excessive fluid velocity.

2.8 Routing: Attention must be given to optimum routing to minimize inherent problems (kinking or flow restriction due to Hose collapse, twisting of the Hose, proximity to hot objects or heat sources).

2.9 Environment: Care must be taken to insure that the Hose and Fittings are either compatible with or protected from the environment (that is, surrounding conditions) to which they are exposed. Environmental conditions including but not limited to ultraviolet radiation, sunlight, heat, ozone, moisture, water, salt water, chemicals, and air pollutants can cause degradation and premature failure. 2.10 Mechanical Loads: External forces can significantly reduce Hose life or cause failure. Mechanical loads which must be considered include excessive flexing, twist, kinking, tensile or side loads, bend radius, and vibration. Use of swivel type Fittings or adapters may be required to insure no twist is put into the Hose. Unusual applications may require special testing prior to Hose selection.

2.11 Physical Damage: Care must be taken to protect Hose from wear, snagging, kinking, bending smaller that minimum bend radius, and cutting, any of which can cause premature Hose failure. Any Hose that has been kinked or bent to a radius smaller than the minimum bend radius, and any Hose that has been cut or is cracked or is otherwise damaged, should be removed and discarded.

Acid & Chemical

Air & Multi-Purpose

Fire Suppression

Food Handling

> Made To Order

Material Handling

Petroleum Dispenser

Petroleum Transport

Petroleum LP Gas

Oil Field

Special Applications

Steam

Water

Welding

Couplings & Equipment

> Safety & Tech Data

2.12 Proper End Fitting: See instructions 3.2 through 3.5. These recommendations may be substantiated by testing to industry standards such as SAE J517 for hydraulic applications, or MIL-A-5070, AS1339, or AS3517 for Hoses from Parker's Stratoflex Products Division for aerospace applications.

2.13 Length: When establishing a proper Hose length, motion absorption, Hose length changes due to pressure, and Hose and machine tolerances and movement must be considered.

2.14 Specifications and Standards: When selecting Hose and Fittings, government, industry, and Parker specifications and recommendations must be reviewed and followed as applicable.

2.15 Hose Cleanliness: Hose components may vary in cleanliness levels. Care must be taken to insure that the Hose Assembly selected has an adequate level of cleanliness for the application.

2.16 Fire Resistant Fluids: Some fire resistant fluids that are to be conveyed by Hose require use of the same type of Hose as used with petroleum base fluids. Some such fluids require a special Hose, while a few fluids will not work with any Hose at all. See instructions 2.5 and 1.5. The wrong Hose may fail after a very short service. In addition, all liquids but pure water may burn fiercely under certain conditions, and even pure water leakage may be hazardous.

2.17 Radiant Heat: Hose can be heated to destruction without contact by such nearby items as hot manifolds or molten metal. The same heat source may then initiate a fire. This can occur despite the presence of cool air around the Hose.

2.18 Welding or Brazing: When using a torch or arcwelder in close proximity to hydraulic lines, the hydraulic lines should be removed or shielded with appropriate fire resistant materials. Flame or weld spatter could burn through the Hose and possibly ignite escaping fluid resulting in a catastrophic failure. Heating of plated parts, including Hose Fittings and adapters, above 450°F (232°C) such as during welding, brazing, or soldering may emit deadly gases.

2.19 Atomic Radiation: Atomic radiation affects all materials used in Hose assemblies. Since the long-term effects may be unknown, do not expose Hose assemblies to atomic radiation.

2.20 Aerospace Applications: The only Hose and Fittings that may be used for in flight aerospace applications are those available from Parker's Stratoflex Products Division. Do not use any other Hose or Fittings for in flight applications. Do not use any Hose or Fittings from Parker's Stratoflex Products Division with any other Hose or Fittings, unless expressly approved in writing by the engineering manager or chief engineer of Stratoflex Products Division and verified by the user's own testing and inspection to aerospace industry standards.

2.21 Unlocking Couplings: Ball locking couplings or other couplings with disconnect sleeves can unintentionally disconnect if they are dragged over obstructions or if the sleeve is bumped or moved enough to cause disconnect. Threaded couplings should be considered where there is a potential for accidental uncoupling.

3.0 HOSE AND FITTING ASSEMBLY AND INSTALLATION INSTRUCTIONS

3.1 Component Inspection: Prior to assembly, a careful examination of the Hose and Fittings must be performed. All components must be checked for correct style, size, catalog number, and length. The Hose must be examined for cleanliness, obstructions, blisters, cover looseness, kinks, cracks, cuts or any other visible defects. Inspect the Fitting and sealing surfaces for burrs, nicks, corrosion or other imperfections. Do NOT use any component that displays any signs of nonconformance.

Hose and Fitting Assembly: Do not assemble a 3.2 Parker Fitting on a Parker Hose that is not specifically listed by Parker for that Fitting, unless authorized in writing by the engineering manager or chief engineer of the appropriate Parker division. Do not assemble a Parker Fitting on another manufacturers Hose or a Parker Hose on another manufacturers Fitting unless (i) the engineering manager or chief engineer of the appropriate Parker division approves the Assembly in writing or that combination is expressly approved in the appropriate Parker literature for the specific Parker product, and (ii) the user verifies the Assembly and the application through analysis and testing. For Parker Hose that does not specify a Parker Fitting, the user is solely responsible for the selection of the proper Fitting and Hose Assembly procedures. See instruction 1.4.

The Parker published instructions must be followed for assembling the Fittings on the Hose. These instructions are provided in the Parker Fitting catalog for the specific Parker Fitting being used, or by calling 1-800-CPARKER, or at www.parker.com.

3.3 Related Accessories: Do not crimp or swage any Parker Hose or Fitting with anything but the listed swage or crimp machine and dies in accordance with Parker published instructions. Do not crimp or swage another manufacturers Fitting with a Parker crimp or swage die unless authorized in writing by the engineering manager of chief engineer of the appropriate Parker division.

3.4 Parts: Do not use any Parker Fitting part (including but not limited to socket, shell, nipple, or insert) except with the correct Parker mating parts, in accordance with Parker published instructions, unless authorized in writing by the engineering manager or chief engineer of the appropriate Parker division.

3.5 Reusable/Permanent: Do not reuse any field attachable (reusable) Hose Fitting that has blown or pulled off a Hose. Do not reuse a Parker permanent Hose Fitting (crimped or swaged) or any part thereof. Complete Hose Assemblies may only be reused after proper inspection under section 4.0. Do not assemble Fittings to any previously used hydraulic Hose that was in service, for use in a fluid power application.

3.6 Pre-Installation Inspection: Prior to installation, a careful examination of the Hose Assembly must be performed. Inspect the Hose Assembly for any damage or defects. Do NOT use any Hose Assembly that displays any signs of nonconformance.

3.7 Minimum Bend Radius: Installation of a Hose at less than the minimum listed bend radius may significantly reduce the Hose life. Particular attention must be given to preclude sharp bending at the Hose to Fitting juncture. Any bending during installation at less than the minimum bend radius must be avoided. If any Hose is kinked during installation, the Hose must be discarded.

3.8 Twist Angle and Orientation: Hose Assembly installation must be such that relative motion of machine components does not produce twisting.

3.9 Securement: In many applications, it may be necessary to restrain, protect, or guide the Hose to protect it from damage by unnecessary flexing, pressure surges, and contact with other mechanical components. Care must be taken to insure such restraints do not introduce additional stress or wear points.

3.10 Proper Connection of Ports: Proper physical installation of the Hose Assembly requires a correctly installed port connection insuring that no twist or torque is transferred to the Hose when the Fittings are being tightened or otherwise during use.

3.11 External Damage: Proper installation is not complete without insuring that tensile loads, side loads, kinking, flattening, potential abrasion, thread damage, or damage to sealing surfaces are corrected or eliminated. See instruction 2.10.

3.12 System Checkout: All air entrapment must be eliminated and the system pressurized to the maximum system pressure (at or below the Hose maximum working pressure) and checked for proper function and freedom from leaks. Personnel must stay out of potential hazardous areas while testing and using.

3.13 Routing: The Hose Assembly should be routed in such a manner so if a failure does occur, the escaping media will not cause personal injury or property damage. In addition, if fluid media comes in contact with hot surfaces, open flame, or sparks, a fire or explosion may occur. See section 2.4.

4.0 HOSE AND FITTING MAINTENANCE AND REPLACEMENT INSTRUCTIONS

4.1 Even with proper selection and installation, Hose life may be significantly reduced without a continuing maintenance program. The severity of the application, risk potential from a possible Hose failure, and experience with any Hose failures in the application or in similar applications should determine the frequency of the inspection and the replacement for the Products so that Products are replaced before any failure occurs. A maintenance program must be established and followed by the user and, at minimum, must include instructions 4.2 through 4.7.

4.2 Visual Inspection Hose/Fitting: Any of the following conditions require immediate shut down and replacement of the Hose Assembly:

- Fitting slippage on Hose,
- Damaged, cracked, cut or abraded cover (any reinforcement exposed);
- Hard, stiff, heat cracked, or charred Hose;
- Cracked, damaged, or badly corroded Fittings;
- Leaks at Fitting or in Hose;
- · Kinked, crushed, flattened or twisted Hose; and
- Blistered, soft, degraded, or loose cover.

4.3 Visual Inspection All Other: The following items must be tightened, repaired, corrected or replaced as required:

- · Leaking port conditions;
- Excess dirt buildup;
- Worn clamps, guards or shields; and
- System fluid level, fluid type, and any air entrapment.

4.4 Functional Test: Operate the system at maximum operating pressure and check for possible malfunctions and leaks. Personnel must avoid potential hazardous areas while testing and using the system. See section 2.2.

4.5 Replacement Intervals: Hose assemblies and elastomeric seals used on Hose Fittings and adapters will eventually age, harden, wear and deteriorate under thermal cycling and compression set. Hose Assemblies and elastomeric seals should be inspected and replaced at specific replacement intervals, based on previous service life, government or industry recommendations, or when failures could result in unacceptable downtime, damage, or injury risk. See section 1.2.

4.6 Hose Inspection and Failure: Hydraulic power is accomplished by utilizing high-pressure fluids to transfer energy and do work. Hoses, Fittings, and Hose Assemblies all contribute to this by transmitting fluids at high pressures. Fluids under pressure can be dangerous and potentially lethal and, therefore, extreme caution must be exercised when working with fluids under pressure and handling the Hoses transporting the fluids. From time to time, Hose Assemblies will fail if they are not replaced at proper time intervals. Usually these failures are the result of some form of misapplication, abuse, wear, or failure to perform proper maintenance. When Hoses fail, generally the high-pressure fluids inside escape in a stream which may or may not be visible to the user. Under no circumstances should the user attempt to locate the leak by "feeling" with their hands or any other part of their body. High-pressure fluids can and

will penetrate the skin and cause severe tissue damage and possibly loss of limb. Even seemingly minor hydraulic fluid injection injuries must be treated immediately by a physician with knowledge of the tissue damaging properties of hydraulic fluid.

If a Hose failure occurs, immediately shut down the equipment and leave the area until pressure has been completely released from the Hose Assembly. Simply shutting down the hydraulic pump may or may not eliminate the pressure in the Hose Assembly. Many times check valves, etc., are employed in a system and can cause pressure to remain in a Hose Assembly even when pumps or equipment are not operating. Tiny holes in the Hose, commonly known as pinholes, can eject small, dangerously powerful but hard to see streams of hydraulic fluid. It may take several minutes or even hours for the pressure to be relieved so that the Hose Assembly may be examined safely.

Once the pressure has been reduced to zero, the Hose Assembly may be taken off the equipment and examined. It must always be replaced if a failure has occurred. Never attempt to patch or repair a Hose Assembly that has failed. Consult the nearest Parker distributor or the appropriate Parker division for Hose Assembly replacement information.

Never touch or examine a failed Hose Assembly unless it is obvious that the Hose no longer contains fluid under pressure. The high-pressure fluid is extremely dangerous and can cause serious and potentially fatal injury.

4.7 Elastomeric seals: Elastomeric seals will eventually age, harden, wear and deteriorate under thermal cycling and compression set. Elastomeric seals should be inspected and replaced.

4.8 Refrigerant gases: Special care should be taken when working with refrigeration systems. Sudden escape of refrigerant gases can cause blindness if the escaping gases contact the eye and can cause freezing or other severe injuries if it contacts any other portion of the body.

4.9 Compressed natural gas (CNG): Parker CNG Hose Assemblies should be tested after installation and before use, and at least on a monthly basis per AGA 1-93 Section 4.2 "Visual Inspection Hose/Fitting". The recommended procedure is to pressurize the Hose and check for leaks and to visually inspect the Hose for damage. **Caution:** Matches, candles, open flame or other sources of ignition shall not be used for Hose inspection. Leak check solutions should be rinsed off after use.

Acid & Chemical

Air & Multi-Purpose

Fire Suppression

> Food Handling

> > Made To Order

Material Handling

Petroleum Dispenser

Petroleum Transport

Petroleum LP Gas

Oil Field

Special Applications

Steam

Water

Welding

Couplings & Equipment

Safety & Tech Data

Safety

General: Safety in the application and use of industrial hose is a major concern because of the many potentially dangerous products conveyed, and because so many people are involved. Handling these products can be accomplished safely if a few simple precautions are strictly observed. Some of the most important of these are:

- •All operators must be thoroughly trained.
- •The correct hose must be selected to han dle the application.
- The couplings must be correct for the application and also must be securely attached.
 Both hose and couplings should be well maintained and inspected regularly (pages 157 through 159).

Critical Items: While many industrial hose applications are potentially dangerous, a few are of particular concern because their danger is not always so obvious or generally understood. This is particularly true for non-industrial applications where there is greater potential for operation by untrained personnel. A discussion of some of the more common of these follows. (ordering information for RMA publications is on page 159). Aircraft Refueling Hose: The critical nature of flexible rubber hose used to refuel aircraft is obvious. The first safety requirement is to select only hose that meets NFPA 407, API 1529 and BS3158 specifications including 100% pressure testing and cleaning of the completed hose assemblies. Care should be taken that the hose is not kinked, dragged, run over by vehicles or otherwise abused. Frequent inspections for cover cuts, gouges, braid exposure, coupling movement or leakage should be regularly scheduled. Hydrostatic pressure testing at twice the normal working pressure should also be performed on a regular basis. Any leakage or damage to the hose reinforcement is cause for immediate replacement. DO NOT USE GASO-LINE PUMP HOSE FOR REFUELING OF AIR-CRAFT.

Gasoline Pump Hose: The proliferation of selfservice gasoline stations has created a situation where millions of consumers are daily operators of gasoline pumps. This has greatly increased the concern of station operators and suppliers for equipment safety. Gasoline pump hoses in particular are subject to frequent abuse by daily wear and accidents. Hose selection must include consideration of the amount of use and abuse it must withstand during its service life. Only the highest quality, thoroughly tested, UL listed hose must be selected for that service. The proper hose plus constant inspection is the best protection against user accidents. DO NOT USE GASOLINE PUMP HOSE FOR FUELING OF AIRCRAFT.

LP Gas Hose: This discussion again emphasizes the importance of hose selection. LP Gas has volatile characteristics that require special hose construction. The rubber compounds must be designed to handle LP Gas, and the cover must be perforated to prevent gas build-up among the various layers of the hose. Use of the wrong hose may lead to early and sudden failure. In particular, anhydrous ammonia hose is not recommended for LP Gas service. This is important to emphasize because both types of hose are often used in the same area and care must be taken they do not become accidentally switched. DO NOT USE LP GAS HOSE FOR ANHYDROUS AMMONIA. Couplings are also a concern in this service; permanent crimp steel couplings are recommended, as well as high pressure steel inserts attached with interlocking, bolt-on clamps. Couplings with male swivel end styles are not recommended. DO NOT USE WITH SCREW-TOGETHER REATTACHABLE COUPLINGS. Parker/Davco LP Gas Hose is listed in the Petroleum section of this catalog. (Refer to RMA Publication IP-10 "Liquid Petroleum Gas, Specifications for").

WARNING \triangle For LP Gas use ONLY. Do not use for anhydrous ammonia. Do not use with male swivel couplings. Do not use with screwtogether reattachable couplings.

Anhydrous Ammonia (NH₃) Hose: Contact with Anhydrous Ammonia will burn skin, and is especially damaging to the eyes and lungs. This is true for its liquid and gaseous (vapor) state. Many accidents involving NH₃ have occurred by using the wrong hose. NH₃ hose must be specially compounded and constructed to handle the material, and other hoses may fail very guickly and suddenly. It is, therefore, especially important to make sure that only Anhydrous Ammonia hose is recommended and used for this service. In particular, LP Gas hose is not recommended for anhydrous ammonia service. This is important to emphasize because both types of hose are often used in the same area and care must be taken they do not become accidentally switched. DO NOT USE ANHYDROUS AMMONIA HOSE FOR LP GAS OR REFRIGERATION SERVICE. Couplings are also a concern in this application; permanent steel crimp couplings are recommended. Couplings with male swivel end styles are not recommended. Parker/Dayco Anhydrous Ammonia hose is listed in the Acid & Chemical section of this catalog. (Refer to RMA Publications IP-14 "Anhydrous Ammonia Hose, specifications for" and IP-11-2 "Anhydrous Ammonia Hose, Manual for Maintenance, Testing and Inspection").

WARNING ▲ For anhydrous ammonia use ONLY. Do not use in LPG or refrigeration applications. Do not use with male swivel couplings. Do not use with screw-together reattachable couplings. **Natural Gas:** The molecules of natural gas are small, enhancing its ability to permeate through standard rubber or PVC hose constructions. The permeation process is more rapid as the working pressure increases, and natural gas accumulates with potentially dangerous consequences. Use pipe, non-permeable tubing or hose with barrier constructions to convey natural gas. Series 7132/7232 L.P. Gas Hose can be used for natural gas service, but only under the following conditions:

- Maximum working pressure of the application not to exceed 50 PSI.
- The application must be in an outside or open environment.
- Applications that are in an enclosed environment or greater than 50 PSI working pressure are not recommended.
- Do not use LPG hose for fuel hose in vehicles using CNG (Compressed Natural Gas).
- In Natural Gas applications, copper, brass, or other copper-containing fittings should be in accordance to the AGA rating of the particular apparatus.
- The hose used with Natural Gas should be subjected to the same rigorous tests and inspection as if it were being used with LPG.
 Contact Parker/Dayco for specific hose

recommendations.

Welding Hose: Due to the extreme volatility of gases and the rough environment of many welding applications, selection of an appropriate welding hose is critical. The hose must be compatible with the fuel gas used to avoid hose degradation and eventual failure. SPECIFICALLY, USE GRADE R & RM WITH ACETY-LENE FUEL GAS ONLY. Grade T can be used with most fuel gases, including propane. Care should be taken to avoid gouging, dragging, abrading or otherwise damaging the hose cover, which may also lead to premature hose failure. Do not attempt to repair or re-couple hose assemblies; replace all assemblies which show signs of age or abuse. (Refer to RMA Publications IP-7, Rubber Welding Hose, specifications for"; IP-11-5, "Welding Hose, Precautions for the Selection and Use of"; Compressed Gas Association

publication CGA E-1, "Welding and Cutting Equipment, Standard Connections for Regulator Outlets, Torches, and Fitted Hose"; Parker/Dayco publication 103973, "Welding Hose, Applications".

WARNING \triangle Grade R & RM for use with acetylene gas ONLY. Do not use with any other fuel gases. Grade T for use with most fuel gases, including propane. Bleed hoses when not in use for 30 minutes or longer. Couple with one inch ferrules only.

Steam Hose: The potential danger from steam in industrial hose applications is due to the great heat and pressures involved. Water changes to steam at higher temperatures when under pressure. The greater the pressure the higher the temperature required. If the steam escapes, tremendous quantities of heat are released. This, combined with high pressure, provides the potential danger to operators. Use only hose specifically recommended for steam service. (Refer to RMA publication IP-11-1 "Steam Hose, Guide for Maintenance, Testing and Inspection).

WARNING \triangle Water changes to hot water and phases of steam when subjected to heat and pressure. The greater the pressure, the higher temperature required to achieve, maintain a steam phase. If the steam escapes, dangerous quantities of heat are released very suddenly. Use only steam hoses designed for the application.

released very suddenly. Use only steam hoses signed for the application.	Handling
	Petroleum Dispenser
	Petroleum Transport
	Petroleum LP Gas
	Oil Field
	Special Applications
	Steam
	Water
	Welding
	Couplings &
	Equipment

Safety & Tech Data

> Chemical Charts

169

Acid & Chemical

Air & Multi-Purpose

Fire Suppression

Food Handling

> Made To Order

Material Handling

Other Publications

Listed below are the titles of other publications issued by the General Products Group, of the RMA. Information concerning the latest edition, prices, etc., may be obtained on written request to:

RMA – General Products Group The Mail Room P.O. Box 3147 Medina, Ohio 44258 1-800-325-5095 or 216-723-2978 Fax: 216-725-0578

Publication:

No.	Title
IP-7	Rubber Welding Hose, Specifications for
IP-8	Rubber Hose for Oil Suction and Discharge, Specifications for
IP-14	Anhydrous Ammonia Hose, Specifications for
IP-11	HOSE TECHNICAL INFORMATION BULLETINS
IP-11-1	Steam Hose; Guide for Maintenance, Testing and Inspection
IP-11-2	Anhydrous Ammonia Hose; Manual for Maintenance, Testing and Inspection
IP-11-4	Oil Suction and Discharge Hose; Manual for Maintenance, Testing and Inspection
IP-11-5	Welding Hose: Precautions for the Selection and Use of
IP-11-7	Chemical Hose; Manual for Maintenance, Testing and Inspection
IP-11-8	Fuel Dispensing Hose; Manual for Maintenance, Testing and Inspection

Basic Parker/Dayco Hose Constructions

Construction Elements

A hose is generally composed of three elements, each with an important role in the overall performance of that hose. The three elements are:

The Tube (usually rubber) must be compatible with and able to contain the material being conveyed. As shown on page 180, many rubber compounds are used for tube construction, depending upon the material the hose is designed to transmit.

The Reinforcement is the strength member of the hose. It enables the hose to withstand internal and external pressure and abuse. The reinforcement may be applied by several methods, and consists of cotton yarns, synthetic yarns, wire or a combination of these. If a suction or vacuum capability is a requirement, a helix wire may be part of the reinforcement.

The Hose Cover protects the reinforcement from abuse or damage. The cover is usually a rubber compound selected for its resistance to the environment, although, in some cases (fire hose) the reinforcement will also act as the cover. Typical considerations in selecting a cover stock are the need to resist abrasion, ozone, weather and sunlight, chemical or oil spillage, etc.

Construction Methods

Several methods are used to manufacture Parker/Dayco hose. Factors such as size, pressure requirements, cost range required and the application determine the selection of any particular hose style. Following is a description of the various construction methods employed by Parker/Dayco.

Non-Mandrel

Non-mandrel hose is constructed by passing long lengths of extruded tube material through a machine which adds the reinforcement in braided, spiraled or knitted layers. In this method, the hose is not built on a mandrel, therefore lengths are not restricted to the length of the mandrels.

Size Range: 3/16 in. through 1-1/2 in. ID

Typical Uses: Air, Water or general purpose

service where operating conditions are not severe.

Advantages: Economy and long lengths.

Disadvantages: Requires wider ID and OD tolerance range than mandrel made hose, limited pressure capabilities.

Rigid Mandrel – Braided

Hose produced by this method is supported on a rigid metal mandrel and is handled horizontally during production. While a rigid mandrel limits the hose length, it ensures good control of the inside diameter. It also offers sufficient support to the tube that either wire or textile reinforcement may be applied at high tensions, which is necessary in high pressure constructions. After the cover is applied, the hose may be wrapped tightly with nylon tape for curing, giving the familiar "wrapped" appearance to the cover.

Size Range: 1/2 in. through 4 in. ID

Typical Uses: Heavy Duty air, steam, and petroleum transfer.

Advantages: Close tolerances on inside diameter, high pressure ratings, good length stability.

Disadvantages: Higher cost than non-mandrel. Lengths restricted to length of mandrels.

Flexible Mandrel

The flexible mandrel method combines the long length advantage of non-mandrel hose with the close inside diameter tolerances and high pressure ratings of rigid mandrel hose. This is achieved by building the hose on a long length mandrel made of flexible plastic or rubber.

Size Range: 1/4 in. through 1 in. ID

Typical Uses: High pressure, air, water, LPG and steam hoses.

Advantages: Long lengths, close tolerances on I.D., higher pressure ratings than non-mandrel produced hose.

Disadvantages: Higher cost than non-mandrel hose, not available in ID sizes as large as rigid mandrel hose.

Acid & Chemical

Air & Multi-Purpose

Fire Suppression

Food Handling

> Made To Order

Material Handling

Petroleum Dispenser

Petroleum Transport

Petroleum LP Gas

Oil Field

Special Applications

Steam

Water

Welding

Couplings & Equipment

> Safety & Tech Data

Basic Parker/Dayco Hose Constructions

Wrapped Ply–Machine Built

The wrapped ply construction is the oldest method of making hose. After a tube is in place on the mandrel, layers or plies of bias cut fabric are wrapped around the tube. The plies are applied by a building machine which is unable to insert a helix wire. The cover is applied and the hose wrapped in nylon tape for curing.

Size Range: 3/16 in. through 4 in. ID

Typical Uses: Water discharge, sand blast, conduit.

Advantages: Good control of inside diameter tolerances, many special constructions available without large minimum production runs.

Disadvantages: Wire cannot be used in a machine built version of wrapped ply hose; plied hoses are not capable of the high pressure ratings of braided hose.

Wrapped Ply–Hand Built

Wrapped ply hose may be hand built when the diameter is too large for the building machine, where helix wires are required, or where special build-in ends are desired. The plies are laid on by hand rather than by machine, and this allows for the hand-forming of built-in ends.

Size Range: 1/2 in. through 30 in. ID

Typical Uses: Oil suction and discharge, sand suction, acid suction and discharge.

Advantages: Special ends can be built into the hose, wide size range, special constructions available in small quantities.

Disadvantages: Relatively expensive due to high labor content.

Spiral Ply

This method involves applying all hose components (tube, reinforcement and cover) in spiral strips on a rigid mandrel. The layers are applied in a process capable of producing a wide range of ID's with helix wire and built-in ends.

Size Range: 1/2 in. through 30 in.

Typical Uses: Suction and discharge service including oils, acids and other fluids, dry materials and air.

Advantages: Special ends, helix wire, wide size range, I.D. tolerances, flexibility, cost.

Disadvantages: Higher cost than non-mandrel. Lengths restricted to lengths of mandrels.

Temperature Conversion

Look up reading in middle column (shaded). If in degrees Centigrade, read Fahrenheit equivalent in right-hand column; if in Fahrenheit degrees, read Centigrade equivalent in left-hand column. °F=(°C X 1.8) + 32 °C=(°F - 32) X .556

Air & Multi-					56	F - 32) X .5	°C=(°I	1.8) + 32	F=(°C X
Purpose	F	F C	с	F	F C	С	F	F C	С
Fire	163.4	73	22.8	86.0	30	-1.1	-85.0	-65	-53.9
Suppression	165.2	74	23.3	87.8	31	-0.6	-76.0	-60	-51.1
	167.0	75	23.9	89.6	32	0.0	-67.0	-55	-48.3
Food	168.8	76	24.4	91.4	33	0.6	-58.0	-50	-45.6
Handling	170.6	77	25.0	93.2	34	1.1	-49.0	-45	-42.8
9	172.4	78	25.6	95.0	35	1.7	-40.0	-40	-40.0
Mada	174.2	79	26.1	96.8	36	2.2	-31.0	-35	-37.2
Made To	176.0	80	26.7	98.6	37	2.8	-22.0	-30	-34.4
Order	177.8	81	27.2	100.4	38	3.3	-13.0	-25	-31.7
	179.6	82	27.8	102.2	39	3.9	-4.0	-20	-28.9
	181.4	83	28.3	104.0	40	4.4	5.0	-15	-26.1
Material Handling	183.2	84	28.9	105.8	41	5.0	14.0	-10	-23.3
Handling	185.0	85	29.4	107.6	42	5.6	23.0	-5	-20.6
	186.8	86	30.0	109.4	43	6.1	32.0	0	-17.8
Petroleum	188.6	87	30.6	111.2	44	6.7	33.8	1	-17.2
Dispenser	190.4	88	31.1	113.0	45	7.2	35.6	2	-16.7
	192.2	89	31.7	114.8	46	7.8	37.4	3	-16.1
Petroleum	194.0	90	32.2	116.6	47	8.3	39.2	4	-15.6
Transport	195.8	91	32.8	118.4	48	8.9	41.0	5	-15.0
	197.6	92	33.3	120.2	49	9.4	42.8	6	-14.4
Detroloum	199.4	93	33.9	122.0	50	10.0	44.6	7	-13.9
Petroleum LP Gas	201.2	94	34.4	123.8	51	10.6	46.4	8	-13.3
	203.0	95	35.0	125.6	52	11.1	48.2	9	-12.8
	204.8	96	35.6	127.4	53	11.7	50.0	10	-12.2
Oil Field	206.6	97	36.1	129.2	54	12.2	51.8	11	-11.7
	208.4	98	36.7	131.0	55	12.8	53.6	12	-11.1
Special	210.2	99	37.2	132.8	56	13.3	55.4	13	-10.6
Applications	212.0	100	37.8	134.6	57	13.9	57.2	14	-10.0
	230.0	110	43.3	136.4	58	14.4	59.0	15	-9.4
04	248.0	120	48.9	138.2	59	15.0	60.8	16	-8.9
Steam	266.0	130	54.4	140.0	60	15.6	62.6	17	-8.3
	284.0	140	60.0	141.8	61	16.1	64.4	18	-7.8
Water	302.0	150	65.6	143.6	62	16.7	66.2	19	-7.2
	320.0	160	71.1	145.4	63	17.2	68.0	20	-6.7
Welding	338.0	170	76.7	147.2	64	17.8	69.8	21	-6.1
weluliy	356.0	180	82.2	149.0	65	18.3	71.6	22	-5.6
	374.0	190	87.8	150.8	66	18.9	73.4	23	-5.0
Couplings	392.0	200	93.3	152.6	67	19.4	75.2	24	-4.4
& 5	410.0	210	98.9	154.4	68	20.0	77.0	25	-3.9
Equipment	428.0	220	104.4	156.2	69	20.6	78.8	26	-3.3
	446.0	230	110.0	158.0	70	21.1	80.6	27	-2.8
Safety &	464.0	240	115.6	159.8	71	21.7	82.4	28	-2.2
Tech Data	482.0	250	121.1	161.6	72	22.2	84.2	29	-1.7

Chemical Charts

Acid & Chemical

Flexibility and Bend Radius

(REPRINTED FROM RMA HOSE HANDBOOK IP-2 SIXTH EDITION 1996) Flexibility and minimum bend radius are important factors in hose design and selection if it is known that the hose will be subjected to sharp curvatures in normal use. When bent at an angle too sharp, hose may kink or flatten in the cross-section. The reinforcement may also be unduly stressed or distorted and the hose life shortened.

Adequate flexibility means the hose should be able to conform to the smallest anticipated bend radius without overstress. The minimum bend radius is generally specified for each hose in this catalog. This is the radius to which the hose can be bent in service without damage or appreciably shortening its life. The radius is measured to the inside of the curvature.

Formula to determine minimum hose length given hose bend radius and degree of bend required:

 $\frac{A}{360^{\circ}} \times 2 \prod B = L$

where:

A = Angle of bend

B = Given bend radius of hose

L = Minimum length of hose to make bend (Bend must be made equally along this portion of hose length).

∏= (Pi) 3.14

Example: To make a 60° bend at a hoses' rated minimum bend radius of 6.25"...

60 360 x 2 x 3.14 x 6.25 = 6.54"

Thus, the bend must be made over approximately 6-1/2 inches of hose length. The bend radius used must be equal to or greater than the rated minimum bend radius. Bending the hose to a smaller bend radius than minimum may kink the hose and result in damage and early failure.

Oil and Gasoline Resistance Rubber hose is used to convey petroleum products both in the crude and refined stages. The aromatic content of refined gasoline is often adjusted to control the octane rating. The presence of aromatic hydrocarbons in this fuel generally has a greater effect on rubber components than do aliphatic hydrocarbons. Aromatic materials in contact with rubber tend to soften it and reduce its physical properties. For long lasting service, the buyer of gasoline hose should inform the hose manufacturer of the aromatic content of the fuel to be handled so that the proper tube compound can be recommended for the specific application. The effect of oil on rubber depends on a number of factors that include the type of rubber compound, the composition of the oil, the temperature and time of exposure. Rubber compounds can be classified as to their degree of oil resistance based on their physical properties after exposure to a standard test fluid. In this RMA classification, the rubber samples are immersed in IRM 903 oil at 100°C for 70 hours. (See ASTM Method D-471 for a detailed description of the oil and the testing procedure.) As a guide to user of hose in contact with oil, the oil resistance classes and a corresponding description are listed.

Physical	Properties	After	Exposure	to Oil

Class A	Volume Change Maximum	Tensile Strength Retained
Class A (High Oil Resistance) Class B	+25%	80%
(Medium/High Oil Resistance)	+65%	50%
Class C (Medium Oil Resistance)	+100%	40%

Fractional/Decimal/Millimeter

Chemical			ecimal	D		I			ecimal	Г		
Air & Multi- Purpose	Millimeters 13.1 13.5 13.9 14.3	Part of an Inch 0.516 0.513 0.547 0.563	1/8	Inch	1/32 1/32 17 18	Fra 1/64 33 34 35 36	Millimeters 0.40 0.79 1.19 1.59	Part of an Inch 0.016 0.031 0.047 0.063	1/8		ictional 1/32 1 2	Fra 1/64 1 2 3 4 5
Fire Suppression	14.7 15.1 15.5 15.9	0.578 0.594 0.609 0.625	5	10	19 20	37 38 39 40	1.98 2.38 2.78 3.18	0.078 0.094 0.109 0.125	1	2	- 3 4	5 6 7 8 9 10
Food Handling	16.3 16.7 17.1	0.641 0.656 0.672	-		21	41 42 43	3.57 4.0	0.141 0.156	·	_	5	
Made To Order	17.5 17.9 18.3 18.7	0.672 0.688 0.703 0.719 0.734		11	22 23	43 44 45 46 47	4.4 4.8 5.2 5.6 6.0	0.172 0.188 0.203 0.219 0.234		3	6 7	11 12 13 14 15
Material Handling	19.1 19.5 19.8 20.2 20.6	0.750 0.766 0.781 0.797 0.813	6	12 13	24 25 26	48 49 50 51 52	6.4 6.7 7.1 7.5 7.9	0.250 0.266 0.281 0.297 0.313	2	4 5	8 9 10	16 17 18 19 20
Petroleum Dispenser	21.0 21.4 21.8 22.2 22.6	0.828 0.844 0.859 0.875 0.891	7	14	27 28	53 54 55 56 57	8.3 8.7 9.1 9.5 9.9	0.328 0.344 0.359 0.375 0.391	3	6	11 12	21 22 23 24 25
Petroleum Transport	23.0 23.4 23.8	0.906 0.922 0.938		15	29 30	58 59 60	10.3 10.7	0.406 0.422		7	13	26 27
Petroleum LP Gas	24.2 24.6	0.953 0.969		10	30 31	61 62	11.1 11.5 11.9	0.438 0.453 0.469		7	14 15	28 29 30
Oil Field	25.0 25.4	0.984 1.000	8	16	32	63 64	12.3 12.7	0.484 0.500	4	8	16	31 32
Special Applications		5.03937 Inches S, FEET A Meters	S	UNIT: S OF		QUIVA	EAR MEAS LOMETER E ters Meter			TER,	LIME Feet	MIL
	NIUMELEIS		11162	IN IN		3			4	11	1/10	

	KIIOITIELEIS	INIELEI S	IVIIIes	Геес	INIELEIS	wiiiiiiiieters	Inches	reel
	_	7.62	_	25	0.0254	25.4	1	1/12
Steam	_	15.24	_	50	0.3048	304.8	12	1
	_	22.86	_	75	0.6096	609.6		2
	_	30.48	_	100	0.9144	914.4	36	3
	_	38.10	_	125	1.0000	1000.0	39.36	3.28
Water	_	45.72	-	150	1.2192			4
	_	91.44	_	300	1.5240			5
Welding	0.15240	152.40	_	500	1.8288			ĕ
5	0.30480	304.80	_	1000	2.1336			7
	1.00000	1000.00	0.6214	3280.84	2.4384			8
Couplinas	1.60935	1609.35	1.000	5280	2.7432			9
0					3.0480			10
Č.				1				
Equipment).62137 Miles	Kilometer = 0	084 Feet 1	Meter = 3.280	35 Meters 1	1 Mile = 1609.3	0 Millimeters	Foot = 304.8

1 Foot = 304.80 Millimeters 1 Mile = 1609.35 Meters 1 Meter = 3.28084 Feet 1 Kilometer = 0.62137 Miles

Measures of Pressure

1 pound per square inch = 144 pounds per square foot = 0.068 atmosphere = 2.042 inches of mercury at 62° F = 27.7 inches of water at 62° F = 2.31 feet of water at 62°

1 atmosphere = 30 inches of mercury at 62° F = 14.7 pounds per square inch = 2116.3 pounds per square foot = 33.95 feet of water at 62° F.

1 foot of water at 62° F = 62.355 pounds per square foot = 0.433 pounds per square inch.

1 inch of mercury at 62° F = 1.132 feet of water = 13.58 inches of water = 0.491 pound per square inch.

Column of water 12 inches high, 1 inch diameter = .341 pound.

Safety & Tech Data

Chemical Charts

Acid & Chamiaal

Metric Pressure Conversion Table

				ATMOS-					ATMOS-					ATMOS					ATMOS-
PSI	MPa	kgf/cm2	BARS	PHERES	PSI	MPa	kgf/cm2	BARS	PHERES	PSI	MPa	kgf/cm2	BARS	PHERES	PSI	MPa	kgf/cm2	BARS	PHERES
25	17	1.76	1.72	1.70	2500	17.24	175.77	172.50	170.00	5200	35.85	365.60	358.80	353.60	7900	54.47	555.42	545.10	537.20
50	.34	3.52	3.45	3.40	2600	17.93	182.80	179.40	176.80	5300	36.54	372.63	365.70	340.40	8000	55.16	562.46	552.00	544.00
75	.52	5.27	5.18	5.10	2700	18.62	189.83	186.30	183.60	5400	37.23	379.66	372.60	367.20	8100	55.85	569.49	558.90	550.80
100	.69	7.03	6.90	6.80	2800	19.30	196.86	193.20	190.40	5500	37.92	386.69	379.50	374.00	8200	56.54	576.52	565.80	557.60
200	1.38	14.06	13.80	13.60	2900	19.99	203.89	200.10	197.20	5600	38.61	393.72	386.40	380.80	8300	57.23	583.55	572.70	564.40
300	2.07	21.09	20.70	20.40	3000	20.68	210.92	207.00	204.00	5700	39.30	400.75	393.30	387.60	8400	57.92	590.58	579.60	571.20
400	2.76	28.12	27.60	27.20	3100	21.37	217.95	213.90	210.80	5800	39.99	407.78	400.20	394.40	8500	58.61	597.61	586.50	578.00
500	3.45	35.15	34.50	34.00	3200	22.06	224.98	220.80	217.60	5900	40.68	414.81	407.10		8600	59.30	604.64	593.40	584.80
600	4.14	42.18	41.40	40.80	3300	22.75	232.01	227.70	224.40	6000	41.37	421.84			8700	59.98	611.67	600.30	591.60
700	4.83	49.21	48.30	47.60	3400	23.44	239.04	234.60	231.20	6100	42.06	428.87	420.90		8800	60.67	618.70	607.20	598.40
800	5.52	56.24	55.20	54.40	3500	24.13	246.07	241.50	238.00	6200	42.75		427.80		8900	61.36	625.73	614.10	605.20
900	6.20	63.218	62.10	61.20	3600	24.82	253.10	248.40	244.80	6300	43.44		434.70		9000	62.05	632.76	621.00	612.00
1000	6.90	70.31	69.00	68.00	3700	25.51	260.14	255.30	251.60	6400	44.13	449.96	441.60	435.20	9100	62.74	639.79	627.90	618.80
1100	7.58	77.34	75.90	74.80	3800	26.20	267.17	262.20	258.40	6500	44.82	457.00	448.50		9200	63.43	646.82	634.80	625.60
1200	8.27	84.37	82.80	81.60	3900	25.89	274.20	269.10	265.20	6600	45.51		455.40	448.80	9300	64.12	653.86	641.70	632.40
1300		91.40	89.70	88.40	4000	27.58	281.23	276.00	272.00	6700	46.20		462.30	455.60	9400	64.81	660.89	648.60	639.20
1400	9.65	98.43	96.60	95.20	4100	28.27	288.26	282.90	278.80	6800	46.88	478.09	469.20	462.40	9500	65.50	667.92	655.50	646.00
		105.46		102.00	4200	28.96	295.29	289.80	285.60	6900	47.57		476.10		9700	66.88	681.98	669.30	659.60
		112.49		108.80	4300	29.65	302.32	296.70	292.40	7000	48.26	492.15	483.00	476.00	9700	66.88	681.98	669.30	659.60
		119.52		115.60	4400	30.34	309.35	303.60	299.20	7100	48.95		489.90		9800	67.57	689.01	676.20	666.40
		126.55		122.40	4500	31.03	316.38	310.50	306.00	7200	49.64	506.21	496.80	489.60	9900	68.26	696.04	683.10	673.20
		133.58		129.20	4600	31.72	323.41	317.40	312.80	7300	50.33		503.70	496.40	10000		703.07	690.00	680.00
		140.61		136.00	4700	32.41	330.44	324.30	319.60	7400	51.02		510.60	503.20	11000		773.38	759.00	748.00
		147.64		142.80	4800	33.10	337.47	331.20	326.40	7500	51.71		517.50		12000		843.68	828.00	816.00
		154.68		149.60	4900	33.78	344.50	338.10	333.20	7600	52.40		524.40		13000		913.99	897.00	884.00
		161.71		156.40	5000	34.47	351.54	345.00	340.00	7700	53.09	541.36	531.30		14000		984.30	966.00	952.00
2400	16.55	168.74	165.60	163.20	5100	35.16	358.57	351.90	346.80	7800	53.78	548.39	538.20	530.40	15000	103.42	1054.60	1035.00	1020.00

PSI X .0068948 = megapascals (MPa) = meganewton/meter2 PSI X .070307 = kilogram-force per square centimeter

PSI X .0690 = Bars

PSI X .0680 = Atmospheres

1MPa = 10 Bars 1Bar = 14.5 PSI 1 kgf/cm² = 14.22 PSI 1 PSI = .00689 MPa

Vacuum Conversion Table

water

0/
0/
%
10
20
30
40
50
60
70
80
90
100

Pressure Conversion

Feet	ot	wate	er to	nc	hes	ot	merc	cury

Feet of		Feet of	
Water	ln. hg.	Water	In. hg.
1	0.9	18	15.9 ĭ
2	1.8	20	17.7
4	3.5	22	19.4
6	5.3	24	21.2
8	7.1	26	23.0
10	8.8	28	24.8
12	10.6	30	26.5
14	12.4	32	28.3
16	14.1	34	30.0

Conversion Factors

Acid & Chemical

						Chemical
TO CONVERT	INTO	MULTIPLY BY	TO CONVERT	INTO	MULTIPLY BY	
Atmospheres	cms of mercury	76.0	Cubic Feet	cubic cms	2.832 x 10⁴	Air & Multi-
atmospheres	ft. of water (at 4ºC)	33.90	cu ft	cu inches	1728	Purpose
atmospheres	in of mercury		cu ft	cu meters	0.02832	
	(at 0º C)	29.92	cu ft	cu yds	0.03704	
atmospheres	kgs/sq cm	1.0333	cu ft	gals	7.48052	Fire
atmospheres	kgs/sq meter	10.332	cu ft	liters	28.32	Suppression
atmospheres	pound/sq in	14.70	cu ft	pints (liq)	59.84	
			cu ft	quarts (liq)	29.92	Food
						Handling
Bar	newtons/sq m	10 ⁵	Cu Ft/min	cu cms/sec	472.0	
bar	atmospheres	0.9869	cu ft/min	gals/sec	0.1247	
bar	at (tech.)	1.0197	cu ft/min	liters/sec	0.4720	Made
bar	psi	14.504	cu ft/min	lbs water/min	62.43	To
			cu ft/sec	gals/min	448.831	Order
Barrels-Oil	gals/oil	42				
DTILL		0.0500			10.00	Material
BT Units	kg–calories	0.2520	Cu Inches	CC	16.39	Handling
BTUs	ft–lbs	777.9	cu ins	cu ft	5.787 x 10-4	
BTUs	hp–hrs	3.927 x 10-4	cu ins	cu meters	1.639 x 10-5	.
BTUs	kgs-meters	107.5	cu ins	cu yds	2.143 x 10-5	Petroleum
BTUs	kw-hrs	2.928 x 10-4	cu ins	gals	4.329 x 10-3	Dispenser
	6. H. /	10.00	cu ins	liters	1.639 x 10-2	
BTU/Min	ft–lb/sec	12.96	cu ins	pints (liq)	0.03463	Petroleum
BTU/min	hp	0.02356	cu ins	quarts (liq)	0.01732	Transport
BTU/min	kw	0.01757				
BTU/min	watts	17.57	Cu Meters	cc	104	
			cu M	cu ft	35.31	Petroleum
Centimeters	inches	0.3937	cu M	cu ins	61,023	LP Gas
cm	meters	0.01	cu M	cu yds	1.308	
cm	mm	10	cu M	gals	264.2	Oil Field
<u> </u>		0.01010	cu M	liters	10 ³	Uli Fielu
Cms mercury	atm	0.01316	cu M	pints (liq)	2113	
cms mercury	ft water	0.4461	cu M	quarts (liq)	1057	Special
cms mercury	kgs/sq meter	136.0			7 0 4 0 1 0-	Applications
cms mercury	lbs/sq ft	27.85	Cu Yards	cu cms	7.646 x 10⁵	
cms mercury	lbs/sq in	0.1934	cu yds	cu ft	27	•
Ome a /a a a a a d	ft /ma in	1 000	cu yds	cu ins	46,656	Steam
Cms/second	ft/min	1.969	cu yds	cu meters	0.7646	
cms/sec	ft/sec km/hr	0.03281	cu yds	gals	202.0	Water
cms/sec		0.036	Desimatara	matara	0.1	VValGI
cms/sec	meter/min mileo/br	0.6 0.02237	Decimeters	meters	0.1	
cms/sec	miles/hr miles/min		Dograda (Angle)	minutoo	60	Welding
cms/sec	miles/min	3.728 x 10-4	Degrees (Angle)		60 0.01745	
Cms/Sec/Sec	ft/sec/sec	0.03281	degs (angle)		0.01745 3600	
Cms/Sec/Sec	n/sec/sec	0.03261	degs (angle)) secs	3600	Couplings
Cubic Cms	cu ft	3.531 x 10-⁵				& Equipment
cu cms	cu in	6.102 x 10- ²				Ldaihiilein
cu cms	cu meters	10 ⁶				
cu cms	cu yds	1.308 x 10-6				Safety &
cu cms	gals	2.642 x 10-4				Tech Data
cu cms	liters	10-3				
cu cms	pints (liq)	2.113 x 10- ³				.
cu cms	quarts (liq)	1.057 x 10-3				Chemical
	quarto (iiq)	1.007 × 10-0				Charts
			I		177	

Conversion Factors

TO CONVERT	INTO	MULTIPLY BY	TO CONVERT	INTO	MULTIPLY BY
Degrees/Sec	radians/sec	0.01745	Horse-Power	BTUs/min	42.44
degs/sec	revs/min	0.1667	hp	ft–lbs/min	33,000
degs/sec	revs/sec	0.002778	hp	ft–lbs/sec	550
			hp	hp (metric)	1.014
Feet	cms	30.48	hp	kg-calories/min	
ft	ins	12	hp	kws	0.7457
ft	meters	0.3048	hp	watts	745.7
ft	yds	1/3			
			Hp-Hours	BTUs	2547
Ft of Water	atms	0.02950	hp-hrs	ft–lbs	1.98 x 10 ⁶
ft of w	ins mercury	0.8826	hp-hrs	kg-calories	641.7
ft of w	kgs/sq cm	0.03048	hp-hrs	kg–meters	2.737 x 10⁵
ft of w	lbs/sq ft	62.32	hp-hrs	kw–hrs	0.7457
ft of w	lbs/sq in	0.4328			
			Inches	cms	2.540
Feet/Min	cm/sec	0.5080			
ft/min	ft/sec	0.01667	Ins Mercury	atms	0.002458
ft/min	kms/hr	0.01829	ins mercury	ft water	1.133
ft/min	meters/min	0.3048	ins mercury	kgs/sq cm	0.03453
ft/min	miles/hr	0.01136	ins mercury	lbs/sq ft	70.73
			ins mercury	lbs/sq in	0.4912
Ft/Sec/Sec	cms/sec/sec	30.48			
ft/sec/sec	Meters/sec/sec	0.3048	Ins of Water	atms	0.002458
			ins of w	ins mercury	0.07355
Ft–Pounds	BTUs	1.286 x 10- ³	ins of w	kgs/sq cm	0.002540
ft lbs	hp–hrs	5.050 x 10-7	ins of w	lbs/sq ft	5.202
ft lbs	kg–calories	3.241 x 10-4	ins of w	lbs/sq in	0.03613
ft lbs	kg-meters	0.1383			
ft Ibs	kw-hrs	3.766 x 10-7	Kilograms kgs	dynes Ibs	980,665 2.205
Ft–lbs/Min	BTUs/min	7.717 x 10- ²	kgs	tons (short)	1.102 x 10-3
ft-lbs/min	ft-lbs/sec	0.01667	kgs	grams	1000
ft lbs/min	hp	3.030 x 10-5	Ng5	grams	1000
ft-lbs/min	kg-calories/min	3.241 x 10-3	Kgs/Sq Cm	atms	0.9678
ft-lbs/min	kws	2.260 x 10-⁵	kgs/sq cm	ft water	32.81
11-105/11111	KWS	2.200 X 10-3			28.96
Ft–lbs/Sec	BTUs/min	7.717 x 10- ²	kgs/sq cm kgs/sq cm	ins mercury Ibs/sq ft	20.90
ft-lbs/sec		1.818 x 10- ³			2048 14.22
ft-lbs/sec	hp kg-calories/min	1.945 x 10- ³	kgs/sq cm	lbs/sq in	14.22
ft-lbs/sec	-	1.356 x 10- ²	Kilometers		10 ⁵
11-105/500	kws	1.550 X 10-0	kms	cms ft	3281
Gallons	ccs	3785	kms	meters	10 ³
	cu ft	0.1337		miles	0.6214
gals		231	kms	mies	0.6214
gals	cu ins	231 3.785 x 10-3	Kms/Hr	cms/sec	27.78
gals	cu meters				-
gals	liters	3.785	kms/hr	ft/min	54.68
gals	pints (liq)	8	kms/hr	ft/sec	0.9113
gals	quarts (liq)	4	kms/hr	meters/min	16.67
		1 00005	kms/hr	miles/hr	0.6214
Gallons, Imp	US gals	1.20095			07 70
gallons, US	imp gals	0.83267	Kms/Hr/Sec	cms/sec/sec	27.78
	- fi /	0.000	kms/hr/sec	ft/sec/sec	0.9113
Gallons/Min	cu ft/sec	2.228 x 10- ³	kms/hr/sec	Meters/sec/se	c0.2/78
gal/min	liters/sec	0.06308			
gal/min	cu ft/hr	8.0208	1		
gai/min	ou luin	0.0200	1		

Conversion Factors

Acid & Chemical

			1			Chemical		
TO CONVERT	INTO	MULTIPLY BY	TO CONVERT	INTO	MULTIPLY BY	A:,, 0		
Kilowatts	BTUs/min	56.92	Newton	kgs	0.1020	Air & Multi-		
kws	ft-lbs/min	4.425 x 10⁴				Purpose		
kws	ft-lbs/sec	737.6	Ounces	lbs	1.805			
kws	hp	1.341	ozs	gram	28.349527	-		
kws	kg-calories/min	14.34				Fire		
kws	watts	10 ³	Ounces (Fluid)	cu in	1.805	Suppression		
			ozs (fluid)	liters	0.02957			
Kilowatt-Hrs	BTUs	3415				Food		
kw-hrs	ft-lbs	2.655 x 10 ⁶	Pounds	OZS	16	Handling		
kw-hrs	hp-hours	1.341	lbs	tons (short)	0.005	5		
kw-hrs	kg-calories	860.5	lbs	newtons (N)	4.44			
kw-hrs	kg-meters	3.671 x 10⁵	lbs	gram	453.5924	Made		
						То		
Liters	CCS	103	Lbs of Water	cu ft	0.01605	Order		
liters	cu ft	0.03531	lbs of water	cu in	27.73			
liters	cu ins	61.02	lbs of water	gals	0.1204	Material		
liters	cu meters	10 -2				Handling		
liters	gals	0.2642	Lbs of Water/Min	cu ft/sec	2.679 x 10-4	nanunny		
liters	quarts (liq)	1.057						
			Pounds/Cu Ft	lbs/cu in	5.787 x 10-4	Petroleum		
Liters/Min	gals/sec	4.403 x 10-₃				Dispenser		
	0		Pounds/Cu In	lbs/cu ft	1728			
Meters	cms	100						
meters	ft	3.281	Pounds/Sq In	atms	0.06804	Petroleum		
meters	ins	39.37	lbs/sq in	ft water	2.311	Transport		
meters	kms	10 ³	lbs/sq in	in mercury	2.036			
meters	mms	103	lbs/sq in	kgs/sq cm	0.07031	Petroleum		
meters/min	cms/sec	1.667				LP Gas		
meters/min	ft/min	3.281	Radians	degrees	57.29578			
meters/min	ft/sec	0.05468		acgreee	07.2007.0			
meters/min	kms/hr	0.06	Tons (Long)	kgs	1016	Oil Field		
meters/min	miles/hr	0.03728	tons (long)	lbs	2240			
	111100/111	0.00720	tons (long)	tons (short)	1.12000			
Meters/Sec	ft/min	196.8			1.12000	Special		
meters/sec	ft/sec	3.281	Tons (Short)	kgs	2000	Applications		
meters/sec	kms/hr	3.6	tons (short)	kps	907.18486			
meters/sec	kms/min	0.06	tons (short)	tons (long)	0.89287	Steam		
meters/sec	miles/hr	2.237	tons (short)	tons (metric)	0.90718	Sleall		
meters/sec	miles/min	0.03728			0.00710			
1101013/360	111100/11111	0.00720	Watts	BTUs/min	0.05692	Water		
Micron	meters	10- ⁶	watts	ft-lbs/min	44.26			
microns	in	39 x 10-6	watts	ft-lbs/sec	0.7376			
THUIDHS		03 X 10-0	watts	hp	1.341 x 10- ³	Welding		
Miles/Hr	cms/sec	44.70	watts	kg-calories/min				
miles/hr	ft/min	88	watts	ky-calones/min kws	10	• •		
miles/hr	ft/sec	00 1.467	walls	NV0	10	Couplings		
miles/hr	kms/hr	1.609	Watts/Hours	BTUs	3.415	& Equipment		
miles/hr	meters/min	26.82	watts/hrs	ft-lbs	2655	Equipment		
111165/111	11101019/11111	20.02	watts/hrs	hp-hrs	2055 1.341 x 10-3			
Millimeters	cme	0.1	watts/hrs	kg-calories	0.8605	Safety &		
	cms	0.0397	watts/hrs	-	367.1	Tech Data		
mms	ins	0.0397		kg-meters kw-hrs	367.1 10- ³			
Minutos (Analo)	radiana	2.909 x 10-4	watts/hrs	KW-11[5	10-3			
Minutes (Angle)	radians	2.909 X 10-4				Chemical		
						Charts		
			I		179			
					1/9			

Coupling Thread Compatibility

Industrial hose couplings have threads which are usually one of the various "pipe" threads. All pipe threads are commonly referred to by the generic name of Iron Pipe Thread or IPT. There are several different types of IPT threads and you must know specifically what they are to ensure compatibility with mating threads.

IPT Thread Compatibility Chart

		Thread	Compatible
Description	Seal	(Female)	Threads (Male)
	Thread Seal		
American Standard Tapered Pipe Thread	(with Sealing		NPT
	Compound)	NPT	NPTF
American Standard Tapered Dryseal Pipe Thread	Thread Seal	NPTF	NPTF
	(Dryseal)*		NPT
American Standard Straight Pipe Thread for	Washer or		
mechanical joints (includes 2 female types,	Mechanical	NPSM	NPSM
depending on sealing method, and one male type	Ground		NPT
compatible with both females)	Joint		NPTF
American Standard Straight Pipe Threads for	Washer	NPSH	NPSH
hose couplings and nipples			NPT
			NPTF

In addition, there are various other thread types that may be found on industrial hose couplings. These types are generally not compatible with any other thread types:

GHT	Garden Hose Thread	Washer seal
API	American Petroleum Institute Thread	Thread seal
JIC (37°)	Joint Industry Conference	O-ring or mechanical seal
SAE (45°)	Society of Automotive Engineers	Mechanical seal
NF	Welding Hose Threads-Left Hand and Right Hand	Mechanical seal
CHT	Chemical Hose Thread (for booster hoses)	Gasket seal

*When NPTF Threads are once used, they require sealing compound for future use.

Dimensions of Seamless and Welded Steel Pipe

ASA-B36.10 and B36.19

Nominal	Outside														
Pipe Size	Diameter	10	20	30	Stand-	40	60	Extra	80	100	120	140	160	XX	
(in.)	(in.)				ard			Strong						Strong	Air &
1/8	0.405	-	-	-	0.068	0.068	-	0.095	0.095	-	-	-	-	-	Multi-
1/4	0.540	-	-	-	0.088	0.088	-	0.119	0.119	-	-	-	-	-	
7/8	0.675	-	-	-	0.091	0.091	-	0.126	0.126	-	-	-	-	-	Purpose
1/2	0.840	-	-	-	0.109	0.109	-	0.147	0.147	-	-	-	0.188	0.294	
3/4	1.050	-	-	-	0.113	0.113	-	0.154	0.154	-	-	-	0.219	0.308	
1	1.315	-	-	-	0.133	0.133	-	0.179	0.179	-	-	-	0.250	0.358	
1-1/4	1.660	-	-	-	0.140	0.140	-	0.191	0.191	-	-	-	0.250	0.382	Fire
1-1/2	1.900	-	-	-	0.145	0.145	-	0.200	0.200	-	-	-	0.281	0.400	Suppression
2	2.375	-	-	-	0.154	0.154	-	0.218	0.218	-	-	-	0.344	0.436	oupprovion
2-1/2	2.875	-	-	-	0.203	0.203	-	0.276	0.276	-	-	-	0.375	0.552	
3	3.50	-	-	-	0.216	0.216	-	0.300	0.300	-	-	-	0.438	0.600	
3-1/2	4.00	-	-	-	0.226	0.226	-	0.318	0.318	-	-	-	-	-	Food
4	4.50	-	-	-	0.237	0.237	-	0.337	0.337	-	0.438	-	0.531	0.674	
5	5.563	-	-	-	0.258	0.258	-	0.375	0.375	-	0.500	-	0.625	0.750	Handling
6	6.625	-	-	-	0.280	0.280	-	0.432	0.432	-	0.562	-	0.719	0.864	
8	8.625	-	0.250	0.277	0.322	0.322	0.406	0.500	0.500	0.594	0.719	0.812	0.906	0.873	
14 O.D.	14.00	0.250	0.312	0.375	0.375	0.438	0.594	0.500	0.750	0.938	1.094	1.250	1.406	-	
16 O.D.	16.00	0.250	0.312	0.375	0.375	0.500	0.656	0.500	0.844	1.031	1.219	1.438	1.594	-	Made
18 O.D.	18.00	0.250	0.312	0.438	0.375	0.562	0.750	0.500	0.938	1.156	1.375	1.562	1.781	-	То
20 O.D.	20.00	0.250	0.375	0.500	0.375	0.594	0.812	0.500	1.031	1.281	1.500	1.750	1.969	-	Order
22 O.D.	22.00	0.250	0.375	0.500	0.375	-	0.875	0.500	1.125	1.375	1.625	1.875	2.125	-	Oluei
24 O.D.	24.00	0.250	0.375	0.562	0.375	0.688	0.969	0.500	1.218	1.531	1.812	2.062	2.344	-	
26 O.D.	26.00	0.312	0.500	-	0.375	-	-	0.500	-	-	-	-	-	-	
28 O.D.	28.00	0.312	0.500	0.625	.0375	-	-	0.500	-	-	-	-	-	-	Material
30 O.D.	30.00	0.312	0.500	0.625	0.375	-	-	0.500	-	-	-	-	-	-	
32 O.D.	32.00	0.312	0.500	0.625	0.375	0.688	-	0.500	-	-	-	-	-	-	Handling
34 O.D.	34.00	0.312	0.500	0.625	0.375	0.688	-	0.500	-	-	-	-	-	-	-
36 O.D.	36.00	0.312	0.500	0.625	0.375	0.750	-	0.500	-	-	-	-	-	-	
42 O.D.	42.00	-	-	-	0.375	-	-	0.500	-	-	-	-	-	-	
															Petroleum

Dimensions of 150-Lb. Steel Flanges ASA

Nominal Pipe Size (in.) 1 1-1/2	Diameter of Bolt Circle (in.) 3-1/8 3-7/8	Number of Bolts 4 4	Diameter of Bolts (in.) 1/8 1/2	Diameter of Bolt Holes (in.) 5/8 5/8	Flange O.D. (in.) 4-1/2 5	*Weight (Lbs.) 2 3	Petroleum Transport
2	4-3/4	4	5/8	3/4	6	5	
2-1/2	5-1/2	4	5/8	3/4	7	8	Petroleum
3	6	4	5/8	3/4	7-1/2	10	
3-1/2	7	8	5/8	3/4	8-1/2	12	LP Gas
4	7-1/2	8	5/8	3/4	9	13	
5	8-1/2	8	3/4	7/8	10	15	
6	9-1/2	8	3/4	7/8	11	19-1/2	
8	11-3/4	8	3/4	7/8	13-1/2	30	Oil Field
10	14-1/4	12	7/8	1	16	41	
12	17	12	7/8	1	19	65	
14	18-3/4	12	1	1-1/8	21	85	
16	21-1/4	16	1	1-1/8	23-1/2	93	Special
18	22-3/4	16	1-1/8	1-1/4	25	120	Applications
20	25	20	1-1/8	1-1/4	27-1/2	155	Applications
24	29-1/2	20	1-1/4	1-3/8	32	210	

*Weights shown for sizes up through 24" are for threaded flanges.

Note: 125-Lb. flange dimensions are same as dimensions of 150-Lb. flanges except thickness and weight.

Dimensions of 150-Lb. Steel Flanges ASA

Welding	*Weight (Lbs.)	Flange O.D. (in.) 4-7/8	Diameter of Bolt Holes (in.) 3/4	Diameter of Bolts (in.) 5/8	Number of Bolts 4	Diameter of Bolt Circle (in.) 3-1/2	Nominal Pipe Size (in.) 1
	6-1/2 7	6-1/8 6-1/2	7/8 3/4	3/4 5/8	4	4-1/2 5	1-1/2 2
Couplings	10	7-1/2	7/8	3/4	8	5-7/8	2-1/2
00upinigo 9	14	8-1/4	7/8	3/4	8	6-5/8	3
α	16	9	7/8	3/4	8	7-1/4	3-1/2
Equipment	24	10	7/8	3/4	8	7-7/8	4
	31	11	7/8	3/4	8	9-1/4	5
	36	12-1/2	7/8	3/4	12	10-5/8	6
	56	15	1	7/8	12	13	8
Safety &	80	17-1/2	1-1/8	1	16	15-1/4	10
Tech Data	110	20-1/2	1-1/4	1-1/8	16	17-3/4	12
loon Data	164	23	1-1/4	1-1/8	20	20-1/4	14
	220	25-1/2	1-3/8	1-1/4	20	22-1/2	16
	280	28	1-3/8	1-1/4	24	24-3/4	18
Chemical	325	30-1/2	1-3/8	1-1/4	24	27	20
Charts	490	36	1-5/8	1-1/2	24	32	24

*Weights shown for sizes up through 24" are for threaded flanges.

Acid &

Chemical

Dispenser

Steam

Water

Corrosion Resistance of Coupling Materials REPRINTED FROM RMA/IP-2/1996

CAUTION: The following data has been compiled from generally available sources and should not be relied upon without consulting and following the specific recommendations of the manufacturer regarding particular coupling materials.

KEY: 1 = Excellent

-
- 2 = Good 3 = Fair or Conditional
- X = Not Satisfactory.
- NOTE: No rating indicates no data available.

Strend Ke

Chemical or Material Conveyed	Mali, from Steel	Br _{ass}	Bronze	Aluminum	Glass	Stainless 410, 416, 4	^{7 + 3} 0 Stainless ³ 02, 202, 304, 302,	Stainless 316	Money
Acetate, Solvents, Crude	~~	3	4	र	6	2	1 1	- კლი 1	2
Acetate, Solvents, Pure		1	1	1		1		1	1
Acetic Acid	x	x	x	2	1	X	2	2	2
Acetic Acid Vapors	x	x		3		x	2	2	2
Acetic Anhydride	x	x		2		x	2	2	2
Acetone	1	1	1	1	1	1	1	1	1
					1	1			
Acetylene		2		1				1	2
Alcohols	1	2		1		1	1	1	1
Aluminum Sulfate	X	3	3	3	1	X	3	2	2
Alums	X	3	2	3	1	X	3	2	2
Ammonia Gas	1	Х	3	1	3	1	1	1	X
Ammonium Chloride	1	3		1*		3	3	1	1
Ammonium Hydroxide	2	Х		2		1	1	1	3
Ammonium Nitrate	1	Х		2		1	1	1	3
Ammonium Phosphate (Ammoniacal)		Х				1	1	1	2
Ammonium Phosphate (Neutral)		3				1	1	1	2
Ammonium Phosphate (Acid)		3				3	2	1	2
Ammonium Sulfate	1	3				2	1	1	2
Asphalt	1	2				2	1	1	1
Beer	2	2	1	1		x	1	1	1
Beet Sugar Liquors	1	2	† .	1		2	1	1	1
Benzene. Benzol	1	1	1	1	1	1	1	1	1
Benzine (petroleum – naphtha)		1	'	1		1	1	1	1
Borax	2	2						1	
	X	3		1		3	2	1	1
Boric Acid			1						
Butane, Butylene	1	1		1				1	1
Butadiene		1				1	1	1	1
Calcium Bisulfate	_	Х	_		-	X	2	1	X
Calcium Hypochlorite	3	3	3	Х	3	X	3	2	3
Cane Sugar Liquors	1	2		1		2	1	1	1
Carbon Dioxide (Dry)	1	1		1		1	1	1	1
Carbon Dioxide (Wet & Aqueous Sol)	2	3		2		2	1	1	2
Carbon Disulfide	2	3		2		2	1	1	3
Carbon Tetrachloride	3	1	2	3	1	1	1	1	1
Chlorine (Dry)	2	2	2	1	2	2	2	2	1
Chlorine (Wet)	X	Х	3	Х	2	X	X	3	3
Chromic Acid		Х	X	Х	1	3	2	2	3
Citric Acid	X	3		1		3	X	1	2
Coke Oven Gas	1	3		2		1	1	1	2
Copper Sulfate	X	X		х		1	1	1	3
Core Oils		1	1			1	1	1	1
Cottonseed Oil	1	1	1	1		1	1	1	1
Creosote	2	3		1		1	1	1	1
Ethers	2	1		1		1	1	1	1
Ethylene Glycol	2	2		'				1	
Ferric Chloride	X	X	x	х	1	X	X	X	X
Ferric Sulfate	x	x	^	x	1			1	3
	2	2		2		1	1	1	1
Formaldehyde									2
Formic Acid	X	2		X		X	2	1	-
Freon	3	1	1	1		1	1	1	1
Furfural	1	2		1		1	1	1	1
Gasoline (Sour)	3	3		3		3	1	1	X
Gasoline (Refined)	1	1	1	1		1	1	1	1
Gelatin	1	3		1		1	1	1	1
Glucose	1	1		1		1	1	1	1
Glue	1	3		1		1	1	1	1
Glycerine or Glycerol	1	2		1		1	1	1	1
Hydrochloric Acid	X	Х	X	х	1	X	X	x	X
Hydrocyanic Acid	3	x		1		3	1	1	2
Hydrofluoric Acid	x	3	3	x	х	X	x	x	1
Hydrogen Fluoride		3			~	X	X	3	1
Hydrogen	1	1		1		1			1
								1	
Hydrogen Peroxide	X	X		1		1	2	1	2
Hydrogen Sulfide (Dry)	3	3		2		3	2	1	3
Hydrogen Sulfide (Wet)	3	3 2		2		3	2	1	3
Lacquers and Lacquer Solvents				1		1	1	1	

*3 to X at high temperatures

Chemical or Material Conveyed	Maii, from Steel from	Br _{ass}	Bronze	Aluminum	Glass	Stainless 410, 416	, 430 Stainless 302, 202, 304, 308	Stainless 316	Moner	Acid & Chemical
Lactic Acid Lime - Sulfur Linseed Oil Magnesium Chloride	X 2 1 3	X 1 3		3 2 1 X		1 3	3 1 1 2	2 2 1 1	1 1 1	Air & Multi- Purpose
Magnesium Hydroxide Magnesium Sulfate Mercuric Chloride Mercury Milk	1 2 3 1 3	2 2 X X 3		X 3 X X 1		1 1 X 1 2	1 1 X 1 1	1 1 3 1 1	1 1 X 2 3	Fire Suppression
Molasses Natural Gas Nickel Chloride Nickel Sulfate	2	2 2 X 3		2 1 X X		2 1 X 3	1 1 3 2	1 1 2 1	1 1 2 1	Food
Nitric Acid Oleic Acid Oxalic Acid Oxygen	X 2 3 1	3 3 3 1	X 1	^ 3 1 2 1	1	3 2 2 3 1	2 2 2 2 1	1 1 1	X 1 1 1	Handling
Palmitic Acid Petroleum Oils (Sour) Petroleum Oils (Refined) Phosphoric Acid — 25%	1 1 3	3 3 1 X	1	1 1 3	3	2 3 1 X	2 1 1 3	1 1 1 1	1 X 1 2	Made To Order
Phosphoric Acid — 25%–50% Phosphoric Acid — 50%–85% Picric Acid Potassium Chloride	X X 3 2	X X X 3		X X 3 3	3 X	X X 2 3	X X 1 2	2 2 1 1	2 2 X 1	Material
Potassium Hydroxide Potassium Sulfate Propane Rosin (Dark)	3 2 1 1	X 2 1 2		X 1	1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	Handling
Rosin (Light) Shellac Sludge Acid Soda Ash (Sodium Carbonate)	1	X 2 X 2		1 2 X		1 1 X 1	1 1 X 1	1 1 3 1	2 1 2 1	Petroleum Dispenser
Sodium Bicarbonate Sodium Bisulfate Sodium Chloride Sodium Cyanide Sodium Hydroxide	3 X 2 2 3	1 3 X X X	2 3	X 3 X X X X	1 X	1 X 3 1 2	1 1 2 1 2	1 1 1 2	1 1 2 1	Petroleum Transport
Sodium Hypochlorite Sodium Metaphosphate Sodium Nitrate Sodium Perborate Sodium Peroxide Sodium Phosphate – Alkaline	X X 1 3 3	X 3 3 3 3 3 3		X 1 1 1 1		X 2 1 1 1 1	3 1 1 1 1 1	2 1 1 1 1 1	3 1 1 1 1 1	Petroleum LP Gas
Sodium Phosphate – Neutral Sodium Phosphate – Acid Sodium Silicate Sodium Sulfate Sodium Sulfate	1 1 1	2 2 3 2 X		Х З		1 X 1 1 1	1 2 1 1 1	1 1 1 1 1	1 1 1 1 2	Oil Field
Sodium Thiosulfate (Hypo) Stearic Acid Sulfate Liquors Sulfur Sulfur Chloride	3 3 2 X	X 3 X X X		X 3 2		1 2 1 2 X	1 2 1 2 3	1 1 1 1 2	2 1 2 3 2	Special Applications
Sulfur Dioxide (Dry) Sulfur Dioxide (Wet) Sulfuric Acid — 10% Sulfuric Acid — 10% - 75%	2 X X	1 X X X	3 X	1 3 X		1 X X X	1 2 X X	1 1 2 X	1 X 2 2	Steam
Sulfuric Acid — 75% – 95% Sulfuric Acid — 95% Sulfurous Acid Tannic Acid	3 2 X 3	X X X 3	X X 1	X X X		3 2 X	3 2 3 1	2 2 2 1	3 X X 1	Water
Tar Toluene, Toluol Trichlorethylene Turpentine	1 1 3	2 1 1 3		1 1 <u>3</u> 1		2 1 1 3	1 1 1 1	1 1 1 1	1 1 1 1	Welding
Varnish Vegetable Oils Vinegar Water (Acid Mine Water) Water (Fresh)	2 1 3 3 3	2 2 3 X 1		1 3 3 1		1 1 3 <u>2</u> 1	1 1 2 1	1 1 1 1 1	1 1 2 3 1	Couplings & Equipment
Water (Salt) Whiskey Wines	3 X X	3 2 2	2	х		3 3 3	2 1 1	2 1 1	1 2 2	Equipment
Xylene, Xylol Zinc Chloride Zinc Sulfate	2 X 3	1 X 3		1 X 3		1 3 3	1 2 2	1 1 1	1 1 1	Safety & Tech Data

Chemical Charts

Chemical Guide

The Chemical Guides in this section are offered as a general indication of the compatibility of the various materials used in Parker/Dayco hose with the chemicals and fluids listed. The basis for the ratings in this guide include actual service experience, the advice of various polymer suppliers, and the considered opinion of our rubber chemists. When in doubt, a sample of the compound should always be tested with the particular chemical it is to handle. Some of the variables that come into play in the resistance of a compound to a chemical attack are:

1. **Temperature of the Material Transmitted:** Higher temperatures increase the effect of chemicals on rubber compounds. The increase varies with the polymer and the chemical. A compound quite suitable at room temperature might fail very quickly at higher temperatures.

2. Service Conditions:

A rubber compound usually swells when exposed to a chemical. With a given percent of swell, a hose tube may function satisfactorily if the hose is in a static condition, but may fail quickly if the hose is subject to flexing.

3. The Grade or Blend of the Rubber Compound:

Basic rubber polymers are sometimes mixed or blended together to enhance a particular property for a specific service. As an example, the NBR used as the tube material for Parker/Dayco aircraft refueling hose may vary slightly in its makeup from the NBR used in the tube of Thoro-Flo Multi-Purpose hose. The reaction to a particular chemical may, therefore, be somewhat different.

When in doubt, a sample of the com pound should always be tested with the particular chemical it is going to handle.

General Chemical Resistance of Parker/Dayco Hose Compounds.

See the following pages for specific applications.

Common Name	ASTM Designation D1418-64	Composition	General Properties	Hose Element
Buna-N or Nitrile	NBR	Nitrile-Butadiene	Excellent oil resistance. Good physical properties.	Tube/Cover
Cross Linked Polyethylene	XPE	Cross Linked Polyethylene	Excellent resistance to most solvents, oils and chemicals. Do not confuse with chemical properties of standard polyethylene.	Tube
EPT or EPDM	EPDM	Ethylene- propylene-diene- terpolymer	Good general purpose polymer. Excellent heat ozone, and weather resistance. Not oil resistant	Tube/Cover
Flourocarbon resin (Teflon)	TFE	Polytetra- flouroethylene	Excellent chemical and solvent resistance, inert to most materials. Smooth anti-adhesive surface – easily cleaned.	Tube
GRS or SBR	SBR	Styrene- Butadiene	Good physical properties, including abrasion resistance. Not oil resistant.	Tube/Cover
Hypalon	CSM	Chloro-sulfonated polyethylene	Excellent ozone, weathering and acid resistance. Good abrasion and heat resistance. Can be compounded for good oil resistance.	Tube/Cover
Natural	NR	Isoprene Rubber (Natural)	Excellent physical properties, including abrasion resistance. Not oil resistant.	Tube
Neoprene	CR	Chloroprene	Excellent weathering resistance. Flame retarding. Good oil resistance. Good physical properties.	Tube/Cover
Chlorinated polyethylene	СМ	Chloro- polyethylene	Good long term resistance to UV and weathering Good oil and chemical resistance. Excellent flame resistance. Good low temperature impact resistance.	Tube
Viton	FKM	Fluorocarbon rubber	Excellent high temperature resistance, particularly in air or oil. Very good chemical resistance.	Tube/Cover
Epichlorohydrin	ECO	Ethylene oxide Chloromethyl	Excellent oil and ozone resistance. Fair flame resistance and low permeability to gases. Good low temperature properties.	Tube/Cover
Butyl	IIR	Isobutene- isoprene	Very good weathering resistance, low permeability to air. Good physical properties. Poor resistance to petroleum based fluids.	Tube/Cover
Ultra-High Molecular Weight Polyethylene	UHMW	Ultra-High Molecular Weight Polyethylene	Excellent chemical resistance.	Tube

Industrial Hose Chemical Resistance Chart

WARNING \triangle The following data is based on tests and believed to be reliable; however, the tabulation should be used as a guide ONLY, since it does not take into consideration all variables, such as elevated temperatures, fluid contamination, concentration, etc. that may be encountered in actual use. All critical applications should be tested. Contact Parker for recommendation and assistance. Note: All data based on 70°F unless otherwise noted.

Acid & Key: Chemical E = Excellent G = GoodAir & C = Conditional Multi-X = Unsatisfactory Purpose Blank = No Data

Trade Name	Description	ASTM Codes	Parker Codes	
BUTYL CPE	ISOBUTYLENE-ISOPRENE CHLORINATED POLYETHYLENE		BU CP	Food Handling
EPDM HYPALON HYTREL NATURAL NEOPRENE	ETHYLENE PROPYLENE-DIENE CHLOROSULTONYL POLYETHYLENE THERMOPLASTIC POLYESTER NATURAL RUBBER POLYCHLOROPREN	EPDM CSM — NR CR	EP CS HY NR CR	Made To Order
NITRILE NYLON SBR SANTOPRENE	ACRYLONITRILE NYLON POLYMER STYRENE-BUTADIENE ETHYLENE-PROPYLENE-DIENE	NBR 	NI NL SB SP	Material Handling
TEFLON UHMW URETHANE	FLUOROCARBON RESIN ULTRA-HIGH MOLECULAR WEIGHT POLYETHYLENE URETHANE	TFE AU	TF UHMW AU	Petroleum Dispenser
VITON XLPE	FLOROELASTOMER CROSS-LINKED POLYETHYLENE	FKM XPE	VI XP	Petroleum Transport

Щ

												~					
Chemical or Material Conveyed	BUTYI	, СР _Е	EPDM	HYPALO	HYTRE	NATURA.	NEOPRES	NITRILE	ND TAN	SBR	SANTOPRI	TEFLOW	UHIMM	URETHA	UTON	XLPE	Petroleum LP Gas
1 UNDECANOL 1,4-DIOXANE 1-AMINO-2-PROPANOL	E G E		G	E X C		E X G	x	E X G	E	x		E E		x	G X X	E E	Oil Field
1-AMINOBUTANE 1-AMINOPENTANE 1-BROMO-2 METHYL PROPANE 1-BROMO-3 METHYL BUTANE 1-BROMOBUTANE	X G X X X X		C X X	C G X X X		X G X X X X	X X X X	C C X X X X		x		E E E E E		x	X X G G G		Special Application
1-CHLORO-2-METHYL PROPANE 1-CHLORO-3-METHYL BUTANE 1-DECANOL 1-HENDACONAL 2 (2AMINOETHYLAMINO) ETHANOL	C C E	E	x	X X E G		X X C G	x x	X X E G	Е			E E E			G E G	E	Steam
2 (2ETHOXYETHOXY) ETHANOL 2 (2ETHOXYETHOXY) ETHYL ACETATE 2,4-DI-SEC-PENTYLPHENOL 2-AMINOETHANOL	E G E	E	G X G	G G G		C X G	C X G	G G G	E	G X		E		x x c	G G X		Water
2-CHLORO-1-HYDROXY-BENZENE 2-CHLOROPHENOL 2-CHLOROPROPANE 2-ETHOXYETHANOL 2-ETHOXYETHYL ACETATE	G X G G	C G X	X X G	C X C X	x	X X C X	X X C X	X X G X	X X G	X X X X	x	E E E		x x x x	E E C X	G E	Welding
2-ETHYL (BUTYRALDEHYDE) 2-ETHYL (BUTYRALDEHYDE) 2-ETHYL-1-HEXANOIL 2-ETHYLHEXANOIC ACID 2-ETHYLHEXYL ACETATE	G G E C		E	X E G E		X E C X	E	X E C X	G	E	E	E E E E		x	X E X	E	Couplings
2-OCTANONE 3-BROMOPROPENE 3-CHLORO-2-METHYL PROPANE 3-CHLORO-PROPENE	G X C	G	x	XXX		X X X	x x	X X G		Е		E			X G G		& Equipment
4-HYDROXY-4-METHYL-2-PENTANONE ACETALDEHYDE ACETIC ACID, GLACIAL ACETIC ACID-10% ACETIC ACID-50%	E G E E	E E	E G E E	C C C E E	C G E X C	C X B X	C X B C	X X G X C	G E X E C	C X C F X	E G B	E E E G	G E E	X X X X X	X X E G	E E G	Safety & Tech Data
ACETIC ANHYDRIDE ACETIC OXIDE ACETONE ACETONE CYANOHYDRIN ACETONITRILE ACETOPHENONE	G G E E G	G	G B E E	E E X C G X	c c	C X C B X	G X B E X	X X X C X	E	x c x	G B E E E	E E E E E F	G E G X	X G X X X	X X X X X	E E E X	Chemical Charts
		L	I	I	I	L	L	L	I		L	L		L	L	185	

Transport

Fire

Suppression

m

ons

					×.		2 1	INE.			į	RENE	_		INE	
Chemical or Material Conveyed	BUTYI	CPE	EPDM	HYPA	HYTER	NATUR.	NEOPER	NITRU C	NYLOW	SBR	SANTOR	TEFLO	UHMIA.	URETL	NDUN	XLPE
ACETYL ACETONE	E	G	Е	х		х	X	X		x	Е	E	Е	X	X	E
ACETYL CHLORIDE ACETYL OXIDE	X E	E	C G	x	X	с	X	X X	X	X	C G	E	G E	X	G X	G E
ACETYLENE	E	G	E	C	G	G	E	E	E	С	Е	E	Е	G	E	Е
ACETYLENE DICHLORIDE ACETYLENE TETRACHLORIDE	C X		C X	X		X	X	X X				E			G	
ACROLEIN	Ê		Ē	G		G	c	ĉ		С		Ē	х	x	-	E
ACRYLIC ACID ACRYLONITRILE	x	E	x	с		с			E	c		Е	с	x		с
ADIPIC ACID		Ŀ	Ê			Е	E	Е				E	U	Ê	Е	U
AIR, +300F ALK-TRI	G X		G	G X		X X	G	G X		Х	Е	Е	Х	С	Е	Е
ALLYL ALCOHOL	Ê		E	Ê		Ê	E	Ê				E	Е		G	E
	X	~		X		X X		G				E	G		G G	G
ALLYL CHLORIDE	E	G E	E	X E		E	E	E	G	G		E	G		E	G
	G	E	E			E	G	G	v	X		E	E	X	Х	E
ALUMINUM CHLORIDE (AQ)-40% ALUMINUM FLUORIDE	G	С	E	Е		E	E	G	X G	Е		Е	E	c	Е	E
ALUMINUM FORMATE	G			х		х			-			E	Е		E	
ALUMINUM HYDROXIDE ALUMINUM NITRATE (AQ)	E	Е	E E	G E		E	E	E	G	G E		E	E	G C	Е	Е
ALUMINUM SULFATE (AQ)	E	E	E	E	G	E	E	E	E	G	Е	E	E	G	Ē	E
ALUMS-NH3-CR-K AMINES-MIXED	E G		E G	E X	G	E G	E	E X	С	E G		E	E	GX	x	E
AMINO XYLENE	G		c		- u	u				u					Ĉ	
	G	G C							С			Е				
AMINODIMETHYLBENZENE AMINOETHANE	G	C	E	с		с	x	x		с		E		x	x	
	E		E	G		E	E	G	G	E		E	_	E	E	_
AMMONIUM CHLORIDE (AQ) AMMONIUM HYDROXIDE	E	G E	E E	G E	E	E	E	G		E	E	E	E	G X	E	E
AMMONIUM NITRATE (AQ)	E	G	E	E	G	Е	E	E	G	E		E	E	E	E	E
AMMONIUM PHOSPHATE, DIBASIC AMMONIUM SULPHATE (AQ)	E	E	E	E	G	E	E	E	EG	E G		E	E	E	E	E
AMMONIUM SULPHITE	E		E	E	- ŭ	E	E	E		E		E		-	E	E
AMMONIUM THIOSULPHATE AMYL ACETATE	E G		E E	E X	c	E X	E X	E X	G	x	х	E	Е	x	E	E
AMYL ACETONE	G			x		x			ŭ		~	E			x	E
AMYL ALCOHOL	E	E	E	E	E	E C	E	G	E	E	E	E	E	X	E	E
AMYL AMINE AMYL BROMIDE	G			С				С				E			G	
AMYL CHLORIDE	X	С	x	Х		х	X		E	x		E	Е	С	E	G
AMYL ETHER ANETHOL	x	х		C X		х		С	G			E	G		G	G
ANILINE	E	G	G	Х	Х	Х	X	Х	С	X		E	E	X	С	E
ANILINE DYES ANILINE OIL	G	G	G C	G		G	С	X	X	G		E	E	X	C C	E
ANIMAL FATS	С	-	E	С	G		G	E	E	x	Е	E	Е	C	E	Е
ANTIMONY CHLORIDES	E X		E G	G X		x	X	G X		x		E	x	x	E	E X
ARGON	G		E	X	E	х	X	E	E	x		E	E	E	E	E
ARSENIC ACID ASPHALT	E X	E	E X	E X	с	G X	E X	E X	G E	E X	Е	G E	E X	C G	E	E X
ASTM FUEL A	x	Е	x	Ĝ	E	x	Ĝ	Ê	E	x	X	E	Ĝ	G	E	Ĝ
ASTM FUEL B ASTM FUEL C	X X	GО	X X	X X	E	X X	X X	х	E	X X	X X	E	G G	G	E	G G
ASTM FOEL C ASTM OIL NO. 2	x	E	x	x	E	x	Ĝ	Е	E	x	x	E	E	G	Е	E
ASTM OIL NO. 3	X		X	G	E	X	C	E	E	X	Х	E	E	E	E	E
ASTM OIL NO. 4 ASTM OIL NO.1	X	Е	X	X G	E	X	X E	G	E	X X	Х	E	E	X E	E	E
AUTOMATIC TRANSMISSION FLUID	X		X	C	E	Х	G	E	G	X	Х	E	E	G	E	E
BANANA OIL BARIUM CHLORIDE (AQ)	E	G	G E	C E	G	Е	E	E X	G	X E		E	E	E	Е	E
BARIUM HYDROXIDE (AQ)	E	G	Е	E	G	Е	E	E	G	Е		E	E	E	Е	E
BARIUM SULFIDE (AQ) BEER	E		E E	E		E	E G	E		G E		E	E	E	E	E
BEET SUGAR LIQUORS	E	G	E	E	G	E	G	E	E	E		E	E	x	E	E
BENZAL CHLORIDE BENZALDEHYDE	G		E	x	G	x	x	x	Е	x	х	E	E	x	x	E
BENZENE	X	С	X	X	c	X	X	X	G	X	X	E	G	X	G	E
BENZENE CARBOXYLIC ACID BENZINE	E X		x	X X		x	E C	X C	G	x		E		с	E	Е
BENZOIC ACID	x					x	E	x	E	x		E	Е		E	E
BENZOL	_	С	Х		С			х	G			E	G		G	
BENZOTRICHLORIDE BENZYL ACETATE	E			G		х						E	G E		x	G E
BENZYL ALCOHOL	G		G	G	С	х	X	x	С	X	х	E	E	x	E	E
BENZYL CHLORIDE BENZYL ETHER	X G	х	X C	X X		X X	X X	X X		X X		E	E	G	E X	E
BIS (2-CLOROETHYL) ETHER	X			X		Х		X		X		E	t			
BLACK SULFATE LIQUOR BLEACH (2-15%)	G	С	G E	G E	G	G X	G X	G X	C C	G X		E	E	X X	E	G
BORAX SOLUTION	E	G	E	E	E	G	E	G	G	G		E	E	E	Е	E
			E	E	E	E	E	E	G	E	E	E	E	E	Е	E
BORIC ACID	E	-		0			0	<u> </u>	_						V .	
BORIC ACID BRAKE FLUID (HD-557) 12 DAYS BRINE	G E	E G	E	G E	G	Е	G G	C E	E G	E		E	Е		X E	E
BRAKE FLUID (HD-557) 12 DAYS	G		E		G	E				E			E	x		E C

	~					1	NEOPREME		2		SANTOPPO	N NEVE		URETHAN	JANE /			Acid & Chemical
Chemical or Material Conveyed	BUTYL	CPE	MOd3	HYPALON	HYTREI	NATURA,	NEOP	NITRILE	NNLON	SBR	SANT	TEFLON	UHIMM	UR _{ETI}	VITON	XLPE		Air &
BROMOETHANE BROMOTOLUENE BUGDIOXANE	x x	x	х	x x		c x	x	G		x x		E E		х	E G	F		Multi- Purpose
BUNKER OIL BUTADIENE BUTANE	X X X		X X X	X X X C	E	X X X	X X C	E X E	E	x x x		E E E	E E E	G X X	E G E	E E		Fire
BUTANOIC ACID BUTANOL (BUTYL ALCOHOL) BUTANONE BUTOXYETHANOL	G E E	G G	G G E E	E X X	G E	E X	E X	E X C	G G	E	G X	E G E	E E	X X E	G E	E		Suppression
BUTYL ACETATE BUTYL ACRYLATE BUTYL ALCOHOL BUTYL ALDEHYDE BUTYL BENZYL PHTHALATE	X X G G E	C G	X X G G	X X E C X	C G	X X E X	X X E C	X X E	G G	X E X	G G	X E E E E	EGEEE	x c	X X E X C	E G E E		Food Handling
BUTYL CARBITOL BUTYL CELLOSOLVE BUTYL CHLORIDE BUTYL ETHER BUTYL ETHER ACETALDEHYDE BUTYL ETHER ACETALDEHYDE BUTYL ETHYL ETHER BUTYL OLEATE	E E C X G X G		E G X G	X X X X X X X		X X X X X X X	C X X X	X C X G X	x	x x x x	E	E E E E E E	E E C E E E	G	C X E X X E	C E G E E E		Made To Order
BUTYL PHTHALATE BUTYL STEARATE BUTYLENE BUTYRALDEHYDE BUTYRIC ACID BUTYRIC ANHYDRIDE	G X X G G C		E X X C G	X X X C G	G	X X X X C	X C X X	G E X X C	G	X X X X X		E E E E	E E E	G C X	C E E X G	E E E		Material Handling
CADMIUM ACETATE CALCIUM ACETATE CALCIUM ALUMINATE CALCIUM BICHROMATE CALCIUM BISULFIDE CALCIUM CHLORIDE	E E E E	G	X	E C C E	G	X E E	G C E	G E E E	G	X G E		E E E E E	E E	X C E	X E E E	E E G E		Petroleum Dispenser
CALCIUM HYPOROXIDE CALCIUM HYPOCHLORITE CALCIUM NITRATE CALCIUM SULFIDE CAPRILIC ACID CARBAMIDE CARBITOL	E E E E C G E	G G X	E E E G	G E E E G E G G	E C	E X E X C E X	E C E E G C	E X E C G G	E X E E	E X E X G		E E E E E E	E C E E E	E X X E X	E E E G	E C E E E		Petroleum Transport
CARBOLIC ACID (PHENOL) CARBON DIOXIDE CARBON DISULFIDE CARBON MONOXIDE CARBON TETRACHLORIDE CARBONIC ACID	G G X E X E	G G C X	X G X E X E	G X G X E X E	E X X	X G X C X E	C X G X E X G	X E X E C G	L X E X E X G	X G X G X G	X E X X		E E E G	X E X G X E	E G X E G	E E E E E		Petroleum LP Gas
CASTOR OIL CAUSTIC SODA (SEE SODIUM HYDROXIDE) CELLOSOLVE ACETATE CELLUGUARD	G E G E	G	G E G E	E X X	C C	E X E	E E X E	E X E	G G G	E X E	C E	E E E	E	G X E	E G X E	Ē		Oil Field
CETYLIC ACID CHINA WOOD OIL (TUNG OIL) CHLORDANE <u>CHLORINATED SOLVENTS</u> CHLORO-2-PROPANONE CHLOROACETIC ACID CHLOROACETIC ACID	G X X X G X	G C X	G X X E G E	C E C X G X	E G C X	E X X X X	G E C X C X C	E G X X	C G G X X	B X X X X X	E X	E E E E E	E		E E E X G	G		Special Applications
CHLOROACETONE CHLOROBENZENE, MONO, DI, TRI <u>CHLOROBUTANE</u> CHLOROETHYLBENZENE CHLOROFORM	X C X X	X X	X X X X	X X X X X	x x	X X X X X	C X X	X X X X	E X	X X X X	x x	E E E	E G E E	X C G X	X E E G	E A G E G		Steam
CHLOROPENTANE CHLOROSULFONIC ACID CHLOROTOLUENE CHLOROX CHROME PLATING SOLUTIONS	C X X G X	x	X X G X	X X X G X	x	X X X X X	X X G X	X X G X	x	X X X X X	x	E E E E	E X G G	x x x x	E X E E	E X G G		Water
CHROMIC ACID CHROMIUM TRIOXIDE CINNAMENE CIS-9-OCTADECENOIC ACID	G G X X	X X X	x x x c	X X X G	X X X E	X X X X	x x x c	X X X E	X X E	X X X X	X X	E E E E		X X C G	E E G E	E		Welding
CITRIC ACID COAL OIL COAL TAR COAL TAR NAPHTHA COCONUT OIL	E X X X G	x	E X X X G	E C X X C	G X	E X X X X	E G C	E G X E	G E	E X X X	E X X	E E E E	E E E	E C C X C	C E E E	E E E E		Couplings & Equinment
COKE OVEN GAS COOLANOL (MONSANTO) COPPER CHLORIDE COPPER CYANIDE	X X E E	x	X X E E	X G G	X E	X X G E	X G G E	X E E E	E C G	X X E E		C E E	E	X X G E	E E E	E E E	_	Equipment
COPPER HYDRATE COPPER HYDROXIDE COPPER SULFATE CORN OIL COTTONSEED OIL	E E E G C	X G	E X C	G G E G G	E E E	C G X X	E C C	G G E E G	G G E	G G X X	E	E E E E	E E E	G E E	C C E E E	E E E	_	Safety & Tech Data
CREOSOTE CRESOLS CRESVLIC ACID CROTONALDEHYDE CRUDE OIL	X X X E	3	X X X E X	x x x x x	X	X X X X X	X X X X X X	G X X G	X X E	X X X C X	х	E E E E E	EEEE	C X X X G	E E G X E	E E E E 187		Chemical Charts

									Ē				ENE			ш	
		BUTY	رە <i>ב</i>	EPDM	HYPALO.	HYTRE.	NATURA.	NEOPRES	NITRILE	Ny ON	SBR	SANTOPE	TEFLOW	UHMM	URETHAN	VITON	XLPE
OUMPRE NUMPRIE C C X X X X X Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z <thz< th=""> Z <thz< th=""> <t< td=""><td>CUMENE</td><td>X</td><td></td><td></td><td>Х</td><td></td><td>X</td><td>Х</td><td>Х</td><td></td><td></td><td></td><td>E</td><td>E</td><td>х</td><td>E</td><td>E</td></t<></thz<></thz<>	CUMENE	X			Х		X	Х	Х				E	E	х	E	E
								E						E			E
											E				v		
CYCLORAMOL X Z X X Z X X Z X X Z X X Z X <thx< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Х</td><td></td><td>Е</td><td></td><td></td><td>E</td><td><u> </u></td></thx<>											Х		Е			E	<u> </u>
CYCLOMENNAME X Z Z X X Z Z X X Z Z Z Z Z Z Z <thz< th=""> Z Z <th< td=""><td></td><td></td><td></td><td></td><td></td><td>Е</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>G</td><td></td><td></td></th<></thz<>						Е									G		
CYCLOPENTMOL X Z Q X X E X Z C X X X Z Q X X E Q C Z Z X X Z C Z <thz< th=""> Z Z <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>х</td><td></td><td></td></th<></thz<>															х		
CYCLOPENTANARY X Z X X Z Z X X Z Z X X Z Z X X Z Z X X Z Z X X Z <thz< th=""> Z <thz< th=""> <t< td=""><td></td><td></td><td></td><td>Х</td><td></td><td></td><td></td><td>E</td><td></td><td></td><td>~</td><td></td><td>Е</td><td></td><td></td><td></td><td></td></t<></thz<></thz<>				Х				E			~		Е				
DDT M EXPLOSENCE X X X X X X X X X X X E X E X E X E X Z X Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z <thz< th=""> Z <thz< th=""></thz<></thz<>											^		Е				
DECAMPRONMEMENTALENE X Z				~						_			_	Е	~		
DECALINATION X Z <thz< th=""> Z <thz< th=""> <thz< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>х</td><td></td><td></td><td></td><td></td><td>E</td></thz<></thz<></thz<>												х					E
DECY ALCOHOL X X E X X E E C E C C E C E C E C E C E C E C E C C E C E E E C <t< td=""><td></td><td>v</td><td>С</td><td>v</td><td>v</td><td></td><td>v</td><td>v</td><td>v</td><td>0</td><td>v</td><td>v</td><td>-</td><td>v</td><td>v</td><td>_</td><td></td></t<>		v	С	v	v		v	v	v	0	v	v	-	v	v	_	
BECH BUTYL HTHAATE E X X X X E E C C E C E C E C E C E C				^						G	^	^			^		
DECULATION E C E C C C C C C X									v								
DEVELOPMG FLUID (PHOTO) G G E X Z X X Z X X Z X X Z X X Z X X X X Z X X Z Z X X Z Z X X Z Z Z Z Z Z Z Z Z Z Z Z Z Z <thz< th=""> Z Z <thz< th=""></thz<></thz<>																	<u>E</u>
DEXTRON X X X X C G E DUEEHMLEXULAPINES E G X X X X X E X X E C G G C X X X X X E E X X X C G G G G C X X X X X X X X C G E C X X X X X X Z E E E E E E E E E E E C X X X Z Z X Z E E C X X Z Z X Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z					_		F							Е	G		
DIGETIVILATIVALENTIALIZE E G X <td></td> <td></td> <td></td> <td></td> <td></td> <td>x</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>E</td> <td></td> <td>G</td> <td></td> <td></td>						x							E		G		
DIÀCETONE ALCÒHOL DIÀCETONE ALCÒHOL DIÀCETONE ALCÒHOL DIÀCETONE ALCÒHOL DIÀCETONE ALCÒHOL DIÀCETONE ALCÒHOL DIÀCETONE ALCÒHOL E E C E E E E E E E E E E E E E E E E E	DI(2ETHYLHEXYL) ADIPATE	E		G	X	E	х	х	Х	-						С	
DIALLYPHTHALATE E E E E E E E E C E DIAMONI ANPTHALENE E X X X X E C C E DIAMONI ANPTHALENE E C X X X C C X X E E C C X X X C X X X Z E E G C X <td< td=""><td>DIACETONE ALCOHOL</td><td>E</td><td></td><td>E</td><td>X</td><td></td><td>х</td><td>X</td><td>х</td><td>E</td><td>x</td><td></td><td>Е</td><td>Е</td><td>x</td><td>X</td><td>с</td></td<>	DIACETONE ALCOHOL	E		E	X		х	X	х	E	x		Е	Е	x	X	с
DAMMONUM PHOSPHATE E		E		E	x		х	х	х		х	Е	Е		х	x	
DAMAYLANNE X X X X X X E X E X E Z E Z E Z <thz< th=""> Z <thz< th=""> <thz< <="" td=""><td></td><td>E</td><td></td><td>E</td><td>Е</td><td></td><td>Е</td><td>Е</td><td>Е</td><td></td><td>Е</td><td></td><td>Е</td><td></td><td></td><td>Е</td><td></td></thz<></thz<></thz<>		E		E	Е		Е	Е	Е		Е		Е			Е	
DIAMYLAMINE E E C G G G G K <th< td=""><td>DIAMYL NAPTHALENE</td><td>E</td><td></td><td></td><td>Х</td><td></td><td>Х</td><td></td><td>v</td><td></td><td>v</td><td></td><td>Е</td><td></td><td></td><td></td><td></td></th<>	DIAMYL NAPTHALENE	E			Х		Х		v		v		Е				
DIBERIAUCE LETHER G C X X X X X X X E G C X DIBROMOMENTHANE X C X X X X E G G E E G C X X X X X E X E G G C C X X X X X E E G C E E G C C C C C E E C C E E C C E E C C C C X X X X X X X X Z E E C X				E											х		E
DBROMOMERIZENE X Z Z Z X X X Z Z E E Z X Z <thz< th=""> Z <thz< th=""> <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>G</td><td>v</td><td></td><td></td><td>_</td><td>~</td><td></td><td></td></t<></thz<></thz<>										G	v			_	~		
DBUTYL ETHER X Z X Z X X Z X X X Z X Z X Z X Z <thz< th=""> Z <thz< th=""> <thz< td=""><td></td><td></td><td></td><td>U</td><td></td><td></td><td></td><td>X</td><td>X</td><td></td><td>X</td><td></td><td></td><td></td><td>G</td><td></td><td></td></thz<></thz<></thz<>				U				X	X		X				G		
DBUTYLENALATE DBUTYLENALATE DBUTYLENALATE DBUTYLENALATE C DBUTYLENALATE C C DBUTYLENALATE C C C C C C C C C											v	х		_	v		_
DIBUTYLAMINE X E E E E E E C C C C C X X X C C C X X C C X X X Z E E E C X X X X X X X X X X X Z <thz< th=""> DICHLOPOPRIANE</thz<>						G				Е							
DICALCIUM PHOSPHATE E C C E C G C X X X X C X Z C X X X X Z C X X X X X Z <thz< th=""> Z <thz< th=""></thz<></thz<>						G					Х						<u> </u>
DICHLORO ETHYLENE C X X X X X X X X X X C X E E C G X DICHLOROBUTANE X <td< td=""><td></td><td></td><td></td><td>~</td><td></td><td></td><td></td><td>^</td><td></td><td></td><td>~</td><td></td><td></td><td>E</td><td>×</td><td></td><td>Е</td></td<>				~				^			~			E	×		Е
DICHLOPORACETIC ACID C × G × × K C X X G X E E X E G X E C X			С				х		С		E						
DICHLOROETHANE C X Z <thz< th=""> Z Z <</thz<>				~		x	G	^		C		~		Е			Е
DICHLOROETHYL ETHER X X X X X X X X X E C C X X X X X X X X X X X X X X X X			v			×				6		~		Е			
DICHLOROMETHANE X C X			^	^		^		^		C		^			^	G	
DICHLOROPENTANE X						v			v	~	v	~					
DICHLOROPROPENE X Z G Z Z E E E E E E E E E E E E E C G X Z Z C G X Z E C C E E Z C C C Z Z Z C C Z Z Z C C Z DIETHYLENETDLEDACOLLETATIZEBA		X			X			Х	Х	0			Е	Е	х	E	E
DICHLOROTOLUENE X X C G X X Z C G X X X C E X X E E C E X X X Z C G X X Z C G X X Z C G X X Z C C X X Z C C X X Z C C X X Z C C X X X X X X X X Z <thz< th=""> E E</thz<>		X			x		х	X	х								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																	
DIETHYL ETHER X Z E Z Z Z Z X X Z <thz< th=""> Z Z <t< td=""><td></td><td></td><td>E</td><td></td><td></td><td></td><td></td><td>С</td><td>E</td><td></td><td></td><td>Х</td><td></td><td></td><td>С</td><td>E</td><td>C</td></t<></thz<>			E					С	E			Х			С	E	C
DIETHYL OXALATE X	DIETHYL ETHER	X		X	X		x		х			Е	Е		Е		
DIETHYL PHTHALATE E X X X X E E C E E C E DIETHYL SEBACATE G G C E X X X E E E X X G D DIETHYL SULFATE G G C G G C E X X X X D D D D C G G C C G G C C D E E C X X X X X X X X X X X X X X X X X Z E E E E E E E E E E D D D D D D D D D D D D D D D D D D<									x							x	
DIETHYLSULFATE G E X X E X E X X Z DIETHYLTRIAMINE G G C G G C G G C X	DIETHYL PHTHALATE	E			X		x						Е	Е			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						E						E					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DIETHYL TRIAMINE	E			С		G		G				Е				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DIETHYLENE GLYCOL	E		E		Е							E				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					с		G				x	Е		Е	x		
DIISOBUTYL KETONE G E X Z Z E E Z X Z Z E Z X Z Z E E C C E E DI DISODECTYL PHTHALATE E E C C E E C C E D D E E C C E D DISOPADALADIAINE E E C C E D	DIHYDROXY DIETHYL ETHER	E		E	E		E						Е				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											х			Е			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	DIISOBUTYLENE	X		X	X		x				x		Е			Е	E
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								x	х		x			E			E
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	DIISOOCTYL ADIPATE	E			X		х				х		Е			С	
DIISOPROPYL ETHER X X C X X G X E G X E DIISOPROPYL ETONE E E E E X Z E X X Z E X X Z E Z X Z Z Z X Z <thz< th=""> Z <thz< th=""></thz<></thz<>				G					G					E		C	E
DIMETHYL PHTHALATE G G G X E X X X X G E X E E Dimetryl Sulface G G X X X X X X E E E E E Z Dimetryl Sulface C X X X X X Z E E C X Z X X Z <thz< th=""> Z <thz< th=""> <thz< <="" td=""><td>DIISOPROPYL ETHER</td><td>X</td><td></td><td></td><td>С</td><td></td><td>х</td><td></td><td>G</td><td></td><td></td><td></td><td>Е</td><td></td><td></td><td></td><td></td></thz<></thz<></thz<>	DIISOPROPYL ETHER	X			С		х		G				Е				
DIMETHYL SULFATE G X X X X E E E X X DIMETHYL SULFIDE C X X X X E E X E E X E E X E E X E E D X X X X X X X Z E E X E E E X E E D X <t< td=""><td></td><td></td><td></td><td></td><td></td><td>Е</td><td></td><td></td><td></td><td></td><td></td><td>G</td><td></td><td>Е</td><td></td><td></td><td></td></t<>						Е						G		Е			
DIMETHYLAMINE G X X X X X X Z E E X E DIMETHYLANILINE X C G X X X X X E G X X G DIMETHYLANILINE X C X X X X X E G X X G DIMETHYLBENZENE X C X X X X E X Z G DIMETHYLBUTANE G G E E E G E E E E E E DIMETHYLCARBINOL E G E Z X X Z E E E DIOCTYLADIPATE E G X X X X E Z C I DIOCTYL HATHALATE G G X E X X E X E X G	DIMETHYL SULFATE	G				_			Х				Е				<u> </u>
DIMETHYLANILINE X C G X				x	x		X	x						Е		x	Е
DIMETHYLBUTANE G E E G E E G E E G E E G E E G E E G E E G E E E E E E E E E E E E E E E E E Diversity Diversit	DIMETHYLANILINE	X		G	X			x	х			<u>,</u>	Е	G		x	
DIMETHYLCARBINOL E G E G E E G E E G E E G E E G E E G E E G E E G E C X X E C E E E E DIMETHYLKETONE E E G C E E E E C E E E E Z X X E C E E E C DIMETHYLKETONE E G G C X X X Z <thz< th=""> <thz< th=""> Z <thz< th=""></thz<></thz<></thz<>		X		X	X	Х		X	Х	G	х	Х	Х	E	Х	E	
DIOCTYL ADIPATE E G X X X X E E C D DIOCTYL PHTHALATE G G X E X X E X E X G E C E E C E E C C E C C E C C E C C E C C E C C C C C C C C C C C C C C C C C C C <t< td=""><td>DIMETHYLCARBINOL</td><td></td><td></td><td></td><td></td><td>~</td><td>Е</td><td></td><td></td><td></td><td></td><td>_ </td><td></td><td></td><td></td><td></td><td></td></t<>	DIMETHYLCARBINOL					~	Е					_					
DIOCTYL PHTHALATE G G X E X X X E X C E E X G E			G			С	x			Ë	С	F			х		
	DIOCTYL PHTHALATE	G		G	X	Е	x	X	х	Е			Е	Е		G	
	DIOAALAINEO	×		G	^		^	^	^		^			-	^	^	

	1	,				NATURA,	NEOPRESS	LE LE	' <u> </u>		SANTOPE	ON		URETHA	NE.		Acid & Chemical
Chemical or Material Conveyed	BUTY	CPE	MOda	HYPALO	HYTREI	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NEOP	NITRILE	WYLOW	SBR	SAN7	TEFLON	UHIMM	URET	VITON	XLPE	Air &
DIOXANE	G		G	Х		X	Х	X	E	Х	-	E	E	X	Х	E	Multi-
DIPENTENE DIPENTYLAMINE DI-P-MENTHA-1,8-DIENE DIPROPYLAMINE	X E X E		X E X	x c x c		X G X G	x x	G G G		X X X		E E E		X X X	E X E		Purpose
DIPROPYLENE GLYCOL	E		_	Е		Е		E				E	_	_	E		F ire
DISODIUM PHOSPHATE DIVINYL BENZENE	E X		E	E X		E X		E		x		E E	E E	E	E E	E E	Fire Suppression
DOWELL INHIBITOR DOWFAX 2A1 SOLVENT		G E															Suppression
DOWFAX 2A1 TA DOWFAX 6A1 SOLVENT		E G															
DOWFAX 6A1 TA "DOWTHERM, A AND E"	x	E X	х	х	G	x	х	x	х	x		с	Е	х	Е	Е	Food
DRY CLEANING FLUIDS	X	^	x	x	ŭ	^	x	ĉ	~	x		Ē		x	E		Handling
DUCGKIRIOEBAANE DURO AW16, 31	×		х					E	Е			Е					
DURO FR-HD EHTYL BUTYL ACETATE	Е		х	G		x		E X	E			E	Е		х	Е	Made
EHTYL DICHLORIDE EHTYLENE DIBROMIDE	C X		C C	X X		X X	<u> </u>	X X		X X		E	G	X X	G G	G G	То
ETHANOIC ACID ETHANOL (GRAIN ALCOHOL)	G E	E G	E	C E	C E	X E	G E	C E	C X	G E	C E	E E	E	X X	X C	Е	Order
ETHANOLAMINE	G		G	Х		G	G	G		x	E	E	Ē	С	х	Ē	
ETHERS ETHYL ACETATE	X G	G G	C E	X X	X C	X X	X X	X X	E	X X	E	E	E	X X	X X	С	Material
ETHYL ACETOACETATE ETHYL ACETONE	G		G G	X X		C X	X X	X X		C X		E	E		X X	E	Handling
ETHYL ACRYLATE ETHYL ALCOHOL	G E	G	G E	X E	Е	X E	X E	XE	х	X E	Е	E	E E	X X	X E	G E	inananig
ETHYL ALDEHYDE	G	ŭ	E	С		х	X	X				Е	E	c	Х	E	
ETHYL ALUMINUM DICHLORIDE ETHYL BENZENE	X X		х	X X		X X	х	X X		x		E E	Е	х	G E	G E	Petroleum
ETHYL BROMIDE ETHYL BUTANOL	X E		х	X E		C E	х	G E		x		E	Е	х	E G	Е	Dispenser
ETHYL BUTYL KETONE ETHYL CELLULOSE	G G		G	X G	G	X G	G	X G	с	G		E E	Е	G	X X	E E	
ETHYL CHLORIDE ETHYL DIISOBUTYLTHIO-CARBAMATE	Ē	х	Ĕ	č	x	Č E	x	Ē	Ē	G E	х	Ē	G E	č	E	G E	Petroleum
ETHYL ETHER	x	G	х	х		х	х	x	Е	х		Е	Е	с	х	E	Transport
ETHYL FORMATE ETHYL IODIDE	G C		G C	G X		X X	G X	X X		x		E E	E G		E G	E E	
ETHYL OXALATE ETHYL PHTHALATE	X E		С	X X		C X	х	X X		х		E	E E	E	E	E	Detectores
ETHYL SILICATE ETHYLAMINE	EG		E	G C		G C	E X	E X		G C		E	E	X X	E X	E	Petroleum LP Gas
ETHYLENE CHLOROHYDRIN	G		G	С		С	G	X		-		E	Е		Е	E	LF Uds
ETHYLENE DIAMINE ETHYLENE DICHLORIDE	E C	х	E X	G C	х	G X	E X	G X	с	G X	х	E E	E G	X X	X G	E G	
ETHYLENE G MONOETHYL E ACETATE ETHYLENE G. MONOBUTYL ETHER	E		E	X C		C X	X C	C C		х		E		X X	E X	E	Oil Field
ETHYLENE G. MONOHEXYL ETHER ETHYLENE G. MONOMETHYL ETHER	E		G	G		x	Е	c				Е			x	E	
ETHYLENE GLYCOL ETHYLENE OXIDE	EX	G X	E C	E X	E E	E X	E X	E X	E G	E X	Е	E	Е	G X	EX	c	Special
FATTY ACIDS	Х	^	x	С	G	Х	G	E	E	X	х	E	E	ĉ	E	E	Special Applications
FERRIC BROMIDE FERRIC CHLORIDE	E	x	Е	E E	G	E E	Е	E E	с	Е		E	E E	Е	E E	Е	Approvisions
FERRIC NITRATE FERRIC SULFATE	E	x	E E	E E	Е	E E	E E	E	E E	E E		E	E E	E G	E	E E	
FERROUS ACETATE FERROUS CHLORIDE	E G		Е	E G	Е	X E	G	X E	Е			E E	Е	G	X E	E E	Steam
FERROUS SULFATE FLOUROSILIC ACID	Ē		E	Ē	Ē	E	Ē	E	Ē	E G	с	Ē	E C	Ĕ	E C	G	
FLUOBORIC ACID	G		Е	Е	V	Е	Е	Е		E	0	E	С	X	E	С	Water
FLUORINE FORMALDEHYDE	X E	G	E E	X G	X C	х	X G	X C	X E	с	Е	G E	X E	X X	E E	X E	mator
FORMALIN FORMIC ACID	E	G X	E E	G E	C C	с	G E	C C	E X	C E	E E	E	Е	X X	E X	E C	
FREON 113 FREON 12	X C	С	X C	E	E	X C	E E	E	X G	G E	X	E		G E	G G		Welding
FREON 22 FREON 502	XE	C	E	Е	х	C E	E E	X G	G E	E E	х	E		х	C G		
FUEL A (ASTM)	X	E	х	G	E	x	G	E	Е	X	х	E	G	G	Е	G	Couplings
FUEL B (ASTM) FUEL OIL	X	G E	X	X C	E G	X X	G	X E	E G	X X	X	E	G E	G C	E	G E	&
FURALDEHYDE FURAN	E X	E	G X	C X	G	X X	C X	X X	С	X X	E	E		X X	x C		Equipment
FURFURAL FURFURAN	E X	E	G X	C X	G	X X	C X	X X	С	X X	Е	E E	Е	X X	X C	E	
FURFURYL ALCOHOL GALLIC ACID	GG		GG	XG	G X	XE	XG	X G	G G	X G	E	E	E E	X X	C E	E C	Safety &
GALLOTANNIC ACID	G		Е	Е		E	Е	E			v	E		E	E		Tech Data
GAS, 100 OCTANE GAS, COAL	X		X E	Х	E G	х	C E	E X	G E	х	Х	E	С	C G	E E		ioon Data
GASOLINE GLACIAL ACRYLIC ACID	X	E	х	х	E	х	х	E	G	х		E	G	С	G	G E	
GLUCONIC ACID GLUCOSE	C E		Е	G E	G	X E	G	C E	G	Е		E E	E E	с	E	E	Chemical
GLYCERINE	E	E	Е	E	E	E	E	E	G G	E	X	E	Ā	0 0 0	E	C	Charts
GLYCEROL	Ε	E	E	E			C		G	E	х				Ľ	189	

								Ä				RENE			Ē	
Chemical or Material Conveyed	BUTY	CPE	EPDM	HYPAI	HYTRE.	NATURA.	NEOPRES	NITRILE	WYLOM	SBR	SANTOC	TEFLOR	UHIMIN	URETHAN	NFON NFON	XLPE
GLYCOGENIC ACID	- 4		~	G	<u> </u>	X			<u>`</u>	•,	•,	E	~	~	_	
GLYCOLS	E		Е	E	С	E	E	E	G	Е	G	Ē	E	х	E	E
GLYCONIC ACID GLYCYL ALCOHOL	C E	Е	Е	G E	Е	X E	Е	C E	G	Е	х	E E	E	С	E	
GREASE, PETROLEUM BASE	X	E	х	х	Е	X	С	Е	Е	х	X	E	Е	Е	E	G
GREEN SULFATE LIQUOR HALON 1211	E		E	G	х	G	G E	G E	Х	G		E	E	E	E	E
HELIUM	E		Е	Е		E	Ē	Ē	Е	Е		E		Е	E	
HEPTALDEHYDE	X			Х		X		E				E	_		X	
HEPTANAL HEPTANE	X	E	Х	X G	G	X	G	E	Е	х		E	E	G	X E	E G
HEPTANE CARBOXYLIC ACID	C			G	-	X	-	c	_			E		-		-
HEPTANOIC ACID		E C														
HEPTANONE HEXADECANOIC ACID	G	G	G	с	Е	Е	G	Е	с	в	Е	E		Е	E	
HEXALDEHYDE	G		Е	С		Х	E	Х		Х		E	E	G	X	E
HEXANE HEXANOL	X C		X G	E G	Е	X E	E G	E	E	X E	E	E	GE	G X	E	G E
HEXENE	x		X	G		X	G	G		X		Ē		Ĝ	E	E
HEXYL ALCOHOL	С		G	G		E	G	G		Е		E	E	Х	G	E
HEXYL METHYL KETONE HEXYLAMINE	G			X C		X C		x C				E			X X	E
HEXYLENE GLYCOL	E		С	E		E	E	E				Ē			Ê	
HISTOWAX		Е		_	_			_	_			_				
HYDRAULIC OIL, PETROLEUM HYDRAZINE	E	E	<u>X</u> E	G G	E X	X	G G	E G	E X	G	Х	E	E		E	E
HYDROBROMIC ACID	E	x	E	E	~	Ē	X	x	x	x		Ē	G	х	E	с
HYDROCHLORIC ACID	E	X	c	c	С	C	С	С	С	Х	E	E	E	С	G	E
HYDROCYANIC ACID HYDROFLUORIC ACID	G	X X	E C	E	X X	G C	G C	G C	X X	G C	E X	E	E	X X	EG	с
HYDROFLUOSILICIC ACID	E	X	E	E	G	E	G	G	X	G	<u></u>	E	G	c	E	C
HYDROGEN CHLORIDE ANHYDROUS		Е										_			_	
HYDROGEN DIOXIDE (10%) HYDROGEN GAS	C E	с	G E	G E	Е	G G	X E	C E	Е	G		E E	Е	Е	E	Е
HYDROGEN PEROXIDE 10%	G		G	Ē	X	G	X	Ċ	G	c		Ē	G	G	E	G
HYDROGEN PEROXIDE OVER 10%	Х	Х	С	G	Х	Х	Х	Х	Х	Х		E	E	С	E	С
HYDROGEN SULFIDE (WET) HYDROXY BENZENE	EG	X	E C	E C	E	X X	E X	C X	х	х		E E	E	C C	C E	E
HYDROXYISOBUTYRONITRILE	u	Е	U	0				^						U	L _	
HYDROXYTOLUENE		Е														
HYVAR XL IMINODI-2-PROPANOL		Е	Е													
IMINODIETHANOL		E														
	GX		G X	G X		X X	X X	G X	Е	G		E E	G C	X	E X	C C
IODINE PENTAFLUORIDE IODOFORM	^		X			X	X	Ē		X				X	<u> </u>	
ISOBUTANAL		G														
ISOBUTYLAMINE ISOBUTYLBROMIDE	E X			C X		C X		X X				E E			X G	
ISOBUTYLCARBINOL	Ê		Е	Ê		Ê	Е	Ê				E		с	E	
ISOCYANATES					G			G	G				E	G	G	E
ISOOCTANE ISOPROPYL ACETATE	X G	E	X G	G X	E C	X X	G X	E X	E G	X X	Х	E E	E	G X	E X	E
ISOPROPYL ALCOHOL	E		E	Ê	E	Ê	Ĝ	Ê	E	Ê		Ē	Ē	x	Ê	E
ISOPROPYL ETHER	X		X	C		X	X	G		X		E	E	G	X	E
JET FUELS JP-4 OIL	X X		X X	X X	Е	X X	X X	E E	с с	X X	X X	E	E	сv	E	E
KEROSENE	x	G	x	x	E	X	ĉ	Ē	Ĕ	x	X	Ē	E	G	Ē	E
KETONES LACQUER SOLVENTS	G	G	E X	C	X C	C	X	X	E	G	Х	E	E	Х	X	G
LACTIC ACID – COLD	X E	C X	Ê	X E	X	X E	Ē	X	E	X E		E	G	X G	X E	E
LACTIC ACID – HOT			х	С	С	X	X	х	Х	х		E			E	
LARD LAVENDER OIL	C X		G X	G X	G	X X	G X	E G	E	X X	E	E E	G G	C X	E	C G
LEAD ACETATE	Ê		Ê	ĉ		Ê	Ĝ	G		x		Ē	E	ĉ	E	E
LEAD NITRATE	E		E	С		E	E	E		Е		E	_		E	
LEAD SULFATE LIME	E		E E	E	G G	E	G	E	G G			E E	E	G	E	E
LIME BLEACH	E		Е	Ğ	ŭ	E	G	Ē	ŭ	Е		Ē		ŭ	E	
LIME SULFUR, WET	E		C	G		C	E	E				E	E		E	E
LIMONENE LINOLEIC ACID	X		X X	X X		X X	X C	X G		х		E			E G	
LINSEED OIL	G	G	С	G	G	X	E	Е	Е	х		E	E	G	E	E
LUBRICATING OILS, SAE LYE SOLUTIONS	X E	G C	X E	X	E C	X E	C E	E C	E G	X G	X C	E E	E	E G	EG	E
M E X	G	C	E	X	c	X	X	x	E	X	<u>x</u>	E	E	X	X	E
MAGNESIUM ACETATE	E		Е	Е		X	X	х		х		E		х	X	E
	E	G	E	E	G	E	E	E G	Е	Е		E	E	E	E	E
MAGNESIUM HYDRATE MAGNESIUM HYDROXIDE	E	G	E E	E	С	E	G E	E	Е	G		E E	E	E C	G E	E
MAGNESIUM SULFATE	E	G	Е	Е	Ğ	G	E	Е	E	G		Ē	Ē	č	E	E
MAGNESIUM SULFITE	E		E	E		G	E	E		G		-	_	~	E	
MALEIC ACID MALEIC ANHYDRIDE	X		E X	X X		X X	X X	C X		X X		E E	E	С	E	G
MALIC ACID	X		х	G		E	G	Е	Е	Ĝ		E	E		E	
MANGANESE SULFATE	G		E	E		G	E	E				E	E	E	E	E
MAPP MERCURY	E	G	G E	Е	Е	Е	E	E E	Е	G E		E	Е	Е	E	Е
MERCURY VAPORS	E		Е	Е	_	С	С	E	_	Е		E			E	
	C E		G	X E		XE	х	X E		х		E	E	х	X G	E E
METHALLYL ALCOHOL				=			I							l	G	-

	7			HYPALON		NATURAL	NEOPREAL	LE LE	N		SANTOPRI	DN SNE	. 5	URETHAN	JANE: A		Acid & Chemical
Chemical or Material Conveyed	BUTY	CP _E	EPDM	HYPA	HYTRE	VATU	VEOF	NITRILE	NYLON	SBR	SAN7	TEFLON	UHMM	^{URET}	VITON	XLPE	Air &
METHALLYL CHLORIDE METHANE CARBOXYLIC ACID		C		-		-		ACETI			-		-				Multi-
METHANOIC ACID	E	x	E	Ē	C	C	E	С	X	E	E	E	_	x	x c	6	Purpose
METHANOL (METHYL ALCOHOL) METHANOL (WOOD ALCOHOL)	E E	G G	E E	E E	E E	E E	E E	E E	G G	E E	E E	E E	E E	X X	c	C C	
METHOXY ETHANOL METHOXYETHOXY ETHANOL		E E															Fire
METHYL 1-2,4-PENTANEDIOL METHYL ACETATE	G	E	G	с	с	х	с	x	Е	x		Е	Е	x	х	Е	Suppression
METHYL ACETOACETATE METHYL ACETONE	G		G	X X		x C	X X	X X	_			E	E	x	X X	E	
METHYL ACETYLENE PROPADIENE			G		-		E	E		G	-			v		-	Food
METHYL ALCOHOL METHYL ALLYL ALCOHOL	E	G	E	E	E	E	E	E	G	E	E	E E	E	x	C G	E	Food Handling
METHYL ALLYL CHLORIDE METHYL AMYL CARBINOL	F	С		X E		X E		E		x		E			F G	G E	nananng
METHYL BENZENE METHYL BROMIDE	X C	С	X C	X X	C X	X X	X X	X G	E G	X X	X X	E	G	X X	E E	E G	
METHYL BUTANE METHYL BUTANOL	X E	E	X E	X E	Е	Е	X E	E	Е	G	Е	E E		G X	E E		Made
METHYL BUTYL KETONE METHYL CARBITOL	E		E	X		X X	x	X		x		E	E	x	x	E	To Order
METHYL CELLOSOLVE	G		G	С	v	х	G	С		x	V	E	E	x	x	Е	Oluei
METHYL CHLORIDE METHYL CYANIDE	X E	С	X E	X G	х	X G	X E	X C	С	х	Х	E E	E	Х	E X	G	
METHYL ETHYL KETONE METHYL HEXANOL	E	G	E	X E	E	X E	X	X E	G	x	С	E	E E	x	X G	E E	Material
METHYL ISOAMYL KETONE METHYL METHACRYLATE	с	С	x	x		х	x	x	с	x	с	Е	G	x	х	G	Handling
METHYL NORMAL AMYL KETONE METHYL PROPYL ETHER	G			XG		X		X	-			E			X	E	
METHYL SALICYLATE	G		с	ŭ		x	х	x				Ē			G		Petroleum
METHYL STYRENE METHYL SULFIDE	с	С		х		х		x				Е					Dispenser
METHYL TERTIARY BUTYL ETHER METHYL-1-PROPANOL	G E	X	E	E		E	X E	X G		X E		G E	G	x	<u>X</u> E		-
METHYL-2-BUTANOL METHYL-2-BUTANONE	E G	E X	с	E X	x	E X	x	x	Е	E X		Е		x	F X	E E	
METHYL-2-HEXANONE METHYL-2-PENTANOL	G	c	E	X		XG	E	G		x		E			X C	E	Petroleum
METHYL-2-PENTANONE	С	х	G	Х	х	Х	Х	Х	G	х	х	E		х	Х		Transport
METHYL-2-PROPEN-1-OL METHYL-3-PENTEN-1-ONE	E	с	E	E		G	E	G				E			С		
METHYL-4-ISOPROPYL BENZENE METHYLALLYL ACETATE	Е	С		G		х		x				Е			х	E	Petroleum
METHYLAMYL ALCOHOL METHYLCYCLOHEXANE	E X		E	E X		G X	E	G X				E E			C G	E G	LP Gas
METHYLENE BROMIDE METHYLENE CHLORIDE	X X		X C	X X	x	X X	X X	X X	с	x	х	E E	G E	x	C G	G	
METHYLETHYL KETONE	E G	G	Ĕ	X X	Ê	X	X	X X	Ğ	x	ĉ	Ē	Ē	x	<u>x</u> x	E E	Oil Field
METHYLISOBUTYL CARBINOL	E		E	E		G	E	G				E	_		С	С	
METHYLISOBUTYL KETONE METHYLISOPROPYL KETONE	C G	X X	G C	X X	X X	X X	X X	X X	G E	X X	х	E E	E	X X	X X	E E	
METHYLLACTONITRILE METHYLPHENOL	E X		х	C C		C X	B X	X X			E	E		X X	X E		Special Applications
METHYLPROPYL CARBINOL METHYLPROPYL KETONE	E G		G	E X		E X	x	E X		x		E			G X	Е	Applications
MIL-A-6091 MIL-E-9500	E		E	E E		E	E E	G E		E E				X X	E E		
MIL-F-16884 MIL-F-17111	X X		X X	C X		X X	C G	E		X X				C C	E		Steam
MIL-F-25558B	X		х	G		х	G	E		x				G	E		
MIL-F-25576C MIL-F-7024A	X X		X X	C X		X X	C X	E E		X X				C G	E E		Water
MIL-G-10924B MIL-G-25013D	X X		X X	G G		X X	X G	E		X X				G C	E E		water
MIL-G-25537A MIL-G-4343B	X C		X C	G G		X C	G G	E G		X C				G E	E E		
MIL-G-5572 MIL-G-7711A	X		X X	X X		X	X X	E		X X				G E	E		Welding
MIL-H-13910B MIL-H-19457B	GE		E	GX		G X	G X	GX		E X				x	E C		
MIL-H-22251	E		E	G			G	G		G					Е		Couplings
MIL-H-27601A MIL-H-5606B	X X		X C	C G		X X	G G	G E		X X				C G	E		&
MIL-H-6083C MIL-H-8446B	X X		X X	G C		C X	G G	E G		X X				G C	E E		Equipment
MIL-J-5161F MIL-J-5624G (JP-3, JP-4, JP-5)	X X		X X	X X		X X	X X	G E		X X				C C	E E		
MIL-L-15016 MIL-L-17331D	X X		X X	G G		X X	G G	E E		X X				E	E E		Safety &
MIL-L-2104B MIL-L-21260	X X		X X	C G		X X	G G	E		x x				E	E		Tech Data
MIL-L-23699A	X		X	С		Х	С	G		X				C	Е		
MIL-L-25681C MIL-L-3150A	E X		E X	G G		G X	G G	G E		G X				C G	E		
MIL-L-3545B MIL-L-4339C	X X		X X	C X		C X	G X	G E		X X				C X	E E		Chemical Charts
MIL-L-6082C MIL-L-6085A	X X		X X	G X		X X	G X	E G		X X				E C	E E		Gnarts
	1	I	I		1		I	I	ı 1	I		ı 1	I	I		191	

				3	2	_		ų			a a	JUENE			ų	
Chemical or Material Conveyed	BUTYL	СР _Е	EP DN	HYPALON	HYTREI	NATURAL	NEOPREME	NITRILE	NNLON	SBR	SANTOPPE	TEFLON	UHMM	URETHAME	WTON	XLPE
MIL-L-7870A MIL-L-9000F	X X		X X	X C		X X	G G	E E		X X				X C	E E	
MIL-L-9236B	x		x	x		x	X	G		x				x	E	
MIL-O-5606 MIL-O-7808	x		х	x		х	х	E G		х		Е		x	E	
MIL-P-27402	E		E	G		v	G	G		G				_	Е	
MIL-S-3136B TYPE 1 FUEL MIL-S-3136B TYPE 2 FUEL	X X		X X	G X		X X	G X	E C		X X				G G	E	
MIL-S-3136B TYPE 3 FUEL MIL-S-3136B TYPE 4 OIL, LOWSWELL	X X		X X	X E		X X	XE	C E		X X				G E	E	
MIL-S-3136B TYPE 5 OIL, MEDSWELL	X		Х	G		X	G	E		Х				G	E	
MIL-S-3136B TYPE 6 OIL, HI SWELL MIL-S-81087	XE		X E	X E		X E	XE	E		X E				G E	E	
MINERAL OIL	х	G	х	Е	Е	х	E	Е	Е	х	х	Е	Е	E	E	E
MINERAL SPIRITS MOBILE HFA	X		X X	G		Х	X	E	E	Х		E	E	G	E	E
MOLTEN SULFUR	G		Е	Е		G	E	G	-			E	х	G	Е	x
MONOBUTYL ETHER MONO-CHLOROACETIC ACID	X G	х	x C	X X	х	X C	C E	C X	x	X X	х	E		X X	X G	E
MONOCHLOROBENZENE	х		х	X	С	х	X	х	Ĝ	х	х	Е	G	x	E	G
MONOCHLORODIFLUOROMETHANE MONOETHANOL AMINE	X G	С	E G	E C	Х	CG	E G	X G		E G	х	E	Е	х	X X	C E
MONOETHYL AMINE	G		E	С		С	X	х		č		E	-	x	X	C
MONOMETHYLAMINE MORPHOLINE	С		E X	С		С	C X	G X	x			E			С	E
MOTOR OIL			x	G	G	<u> </u>	G	E	G			E	E	G	E	E
MTBE MURIATIC ACID	G C	X X	с	с	с	с	X C	X C	x	X X	Е	G E	G E	с	X C	Е
NA-K			х					х				х				
NAPHTHA NAPHTHALENE	X X	E C	X	X X	E	X X	X X	E X	E G	G X	X C	E	E	C G	E	E
NAPTHENIC ACIDS		E	Х	X	U	х	X	G	u	x	U	E	-	-	E	
N-BUTANAL N-BUTYLAMINE	G X		G C	C X		X X	C X	X X		х		E		C X	X X	
N-BUTYLBENZENE	^		C	x		x	^	x		^		E		^	Ê	E
N-BUTYLBROMIDE N-BUTYLBUTYRATE	XE		Е	X X		X X	x	X X		х		E E			G E	G G
N-BUTYLCARBINOL	E	Е	E	Ê	Е	Ê	Ê	Ĝ	Е	Ê	Е	E		x	E	G
	X		_	X		Х	_	E	_	-	_	E		-	E	E
NEON GAS NEU-TRI	E X		E	E X		E X	E	X	E	E	E	E		E	E	E
	E	х	E	X E	~	E	G	G E		X		E	E	X	X E	E
NICKEL CHLORIDE NICKEL NITRATE	E	^	E E	E	С	E	G E	E	С	E		E	E	С	E	E
	E	Х	Е	Е	С	G	E	Е	С	G		Е	Е	С	E	E
NIETYLENE NITRIC ACID, 10%	E	х	Е	G	с	E X	G	x	с	х	Е	Е	Е	x	x	c
NITRIC ACID, 13N	X	Х	Х	X	Х	Х	X	х	X	Х		E		X		
NITRIC ACID, 13N + 5% NITRIC ACID, 20%	X G	X X	X E	X G	X X	X X	X X	X X	X X	X X		E	Е	X X	с	E
NITRIC ACID, 30%	С	Х	G	С	Х	Х	Х	Х	Х	Х		Е	Е	Х	С	E
NITRIC ACID, 30% - 70% NITRIC ACID, CONC (16N)	X X	X X	X X	X X	X X	X X	X X	X X	X X	X X	х	E	E	X X	C E	G G
NITRIC ACID, RED FUMING	С	х	x	x	х	Х	х	х	х	х	Х	E	х	х	C	X
NITRILOTRIETHANOL NITROBENZENE	G	С	<u>Е</u> Х	E X	X X	G X	X	C X	С	G X		E	E	X X	X C	E
NITROETHANE	G		G	С		G	С	х		G	Е	E	Е	X	X	E
NITROGEN NITROMETHANE	E G		E G	E C	с	E G	E X	E X		E C		E	E	E X	E X	E
NITROUS OXIDE GAS	Е		E	Е	-	Е	G	Е	С	-		Е	E	G	E	
N-NONYL ALCOHOL N-OCTANE	E X		х	E X		E X	с	E E		х		E E	G	x	GE	G
NONANOIC ACID	E			X		х		E				Е				
NONANOL N-SERV (75% XYLENE)	E			E		Е		E	Е			E			G E	с
NUTO H			X					E	E			E				
NYVAC LIGHT O-AMINOTOLUENE		G	E					х	E			E				
OCTANOIC ACID	С		_	G		С		С				E	_		_	
OCTANOL OCTYL ACETATE	G		E	G		G X	G	G X		G		E	E	X	E X	E
OCTYL ALCOHOL	G		G	G		G	G	G		G		E	Ē	х	G	E
OCTYL ALDEHYDE OCTYL AMINE	C E			X C		X C		x C				E			X X	E C
OCTYL CARBINOL	Е			Е		Е		E				Е			G	E
OCTYLENE GLYCOL OIL-PETROLEUM	E X	G	х	E G	Е	E X	G	E	G	х	с	E	Е	G	E	C E
OLEIC ACID	х	Х	С	G	Е	Х	C	Е	E	х	-	Е	Е	G	E	E
OLEUM (FUMING SULFURIC ACID) OLIVE OIL	X G	х	X G	X G	х	X X	X G	X E	X E	X X		E	X G	XE	G E	X C
ORTHO-DICHLOROBENZENE	Х		Х	Х	Х	х	Х	Х	E	Х	Х	Е	~	Х	E	
ORTHO-DICHLOROBENZOL ORTHOXYLENE	X X	с	x C	X X	x C	X X	X	X X	E G	X X	X X	E		X X	E	G E
OXALIC ACID	Ē	Х	E	Ē	x	ĉ	Ĝ	G	G	G	E	E	Е	ĉ	E	c
OVALIDITETUANO	i i	Е	E	E	С	х	С	х	С	х		E	С	E	E	C
OXYDIETHANOL OZONE	G				0											E
OZONE PAINT THINNER	G X		х	х		х	Х	X	G	х		E	E	х	G	
OZONE PAINT THINNER PALMITIC ACID	X G	G		С	Е	Е	G	Е	G C	X B	Е	Е	Е	X E	E	G
OZONE PAINT THINNER	X G E X	G X	X G	C E X	E	E E X	G E	E	-	В	E	E E E		E	E E G	G
OZONE PAINT THINNER PALMITIC ACID PAPERMAKERS ALUM PARA METHOXYPROPENYL BENZENE PARA-DICHLOROBENZENE	X G E X X	-	X G X	C E X X	E	E E X X	G E X	E E X	c	B	E	E E	E G	E	E G E	G
OZONE PAINT THINNER PALMITIC ACID PAPERMAKERS ALUM PARA METHOXYPROPENYL BENZENE	X G E X	-	X G	C E X	E	E E X	G E	E	c	В	E	E E E	Е	E	E E G	G

Chemical or	BUTY	CPE	EPDM	HYPA	NOTAL H	NATUP .	NEOPRE	NITRILE	WYLOM.	SBR	SANTOR	TEFLOR	UHIMIN,	URETL	VITON.	XLPE XLPE	Acid & Chemical
Material Conveyed	<i>``</i>	<u>ତ</u>	Щ	Ĩ	Ĩ	Ž	2	2	ج	ୖୖୖ	ઝૅ	Ĕ	3	5	E	~~	
P-CYMENE PELARGONIC ALCOHOL PENTACHLOROETHANE PENTADIONE	X E X	X G	х	X E X		X E X	x x	X E X		х		E E E	E	х	E G E	E E E	Air & Multi- Purpose
PENTAMETHYLENE PENTANE PENTANOL	X X E		X X E	X C E	G	X X E	E C E	G E E	G	x		E E E	G	с с	E E G	G	
PENTANONE PENTASOL PENTYL ACETATE PENTYL ALCOHOL	G E G E	Е	G E E	X E X E	C	X E X E	X E X E	X G X G	GE	G X E	X	E E E		x x x	X G E	E	Fire Suppression
PENTYL BROMIDE PENTYL CHLORIDE PENTYL ETHER	x	с	х	x c		х	x	с	E	x	-	E E E		с	G E	G	Food
PENTYLAMINE PERCHLORIC ACID-2N PERCHLOROETHYLENE PERCHLOROMETHANE	G G X X	с	X G X	C G X	x x	C X X X	X G X X	C X C X	x c	x x	x x	E E E	G	x x	X E E	E G	Handling
PETROLEUM CRUDE PETROLEUM ETHER PETROLEUM OILS PHENBO	X X X	G	X X X	G X G	E	X X X	G C G	E E	G E G	X X X	с	E E E	E	E G G X	E E E	E E E	Made To
PHENOL PHENOLSULFONIC ACID PHENYLAMINE PHENYLBROMIDE	G C E X		G X	X X X X	x	X X X X	X X X	X X X X	×	x	×	E E E	E G	X G C X	E X E G	E G	Order
PHENYLBUTANE PHENYLCHLORIDE PHENYLETHYLENE PHENYLMETHANE	x x x	С	X X X	x x x	x	x x x	x x x	x x x		x		E E E		x c x	E G E	E	Material Handling
PHENYLMETHANOL PHENYLMETHYL ACETATE PHOSPAHTE ESTERS PHOSPHORIC ACID 10%	G E G	G X	G E E	G G X E	c c	X X X	X X E	X X E	C E E	X X G	X E E	E E E	E E	X X E	E X C E	E	Detroloum
PHOSPHORIC ACID 10% - 85% PHOSPHORUS TRICHLORIDE ACID PICRIC ACID, H2O SOLUTION PINE OL	G E C X	× × ×	E E C X	E X E X	x x	G X C X	E X C X	X X C G	C X	G X G X	x	E E C E	E	C G E	E E E	E	Petroleum Dispenser
PINENE POLY CHLORINATED BIPHENOL POLYETHYLENE GLYCOL E-400 POLYOL ESTER	x E	E	x	x E	x	х́ Е	Â G	G	G	x E		E	E	G	E	E	Petroleum Transport
POLYPROPYLENE GLYCOL POTASSIUM ACETATE POTASSIUM BISULFATE	E E		E	E C E	^	E E	G	E G E	G G	X G		E E	E	x	E C E	E	· · · ·
POTASSIUM BISULFITE POTASSIUM CARBONATE POTASSIUM CHLORIDE POTASSIUM CHROMATE	E E G	G	E E E	E E C	X G	E E G	E E E	E E E	G C E G	G E E G		E E E	E E G	E C E G	E E E	E G	Petroleum LP Gas
POTASSIUM CYANIDE POTASSIUM DICHROMATE POTASSIUM HYDRATE POTASSIUM HYDROXIDE POTASSIUM NITRATE	E E G E	G X X	E E G E E	E E E E	G C G	E C G G E	G E G E	E G G E	E G G G G	E G G E	G	E E E E	E G G E	E G G C E	E E G E	E G E E	Oil Field
POTASSIUM PERMANGANATE, 5% POTASSIUM SILICATE POTASSIUM SULFATE POTASSIUM SULFIDE	E E E		E E E	GEEE	X G	шшш	E E E	C E E E	ХСШ	G E G G		т т т	E E E	X E E E	E E E	E E	Special Applications
POTASSIUM SULFITE PRESTONE ANTIFREEZE PRODUCER GAS PROPANEDIOL	E E X C	G	E E X E	E G E	G	G E X E	E C G C	E E E	G	G E X E	E	E E E		E X E G	E E E	E	Steam
PROPANETRIOL PROPANOL PROPANOLAMINE PROPANONE	E	E E G	E	E E X	E	E E C	E E X	E E X	G	E E C	X E E	E E		C X X	E E X	E	
PROPEN-1-OL PROPENEDIAMENE PROPENENITRILE PROPENYL ALCOHOL	E X E	E	E	E		E G E	E X E	E X E				E E	E		G	E	Water
PROPENYLANISOLE PROPIONIC ACID PROPIONITRILE	X E E G		E E	X G		X E E X	C G	X C X X		x	x	E E E	E	x	G X X X	E	Welding
PROPYL ACETATE PROPYL ALCOHOL PROPYL ALDEHYDE PROPYL BENZENE	E G	с	E	X E X		E C	E	E X		E	E	E E	E E	X X	E X	E E	Couplings &
PROPYL CHLORIDE PROPYL ETHER PROPYL NITRATE PROPYLENE	C G X	E	G X	X X X		X X X	X X	X X X		x x		E E	E	X X	G X E	E	Equipment
PROPYLENE DIAMINE PROPYLENE GLYCOL PYDRAUL, 'E' SERIES PYDRAULIC 'C'	E C G X		E G X	C E X X	G	G E X X	C X X	G E X X	G	E X X	E	E E E	E E	G X X	E E	E	Safety &
QUINTOLUBRIC 822 SERIES RED OIL REFRIGERANT 11	X X X	x	X C X	G E	E E	X X X	X C X	G E G	Е	x x		E E		G C	G E C		Tech Data
REFRIGERANT 12 REFRIGERANT 22 RESORCINOL SAE NO. 10 OIL	C X X	C C G	C E G X	E E X	E X X E	C C X	E X C	E X E	G G X E	E G X	X X X X	E E E E		E X X E	G C E E	C C	Chemical Charts

ALAMMONIAC EA WATER WAGE EAWAGE LICATE ESTERS LICATE ESTERS LICONE OIL LVER NITRATE (YDROL 500 YDROL	ол п п п п п п п п п п п п п п п п п п п	CPF CBC CC CC CC CC CC CC CC CC CC CC CC CC	иося в прихидии и при при при при при при при при при	аппоопоопти и и и и и и и и и и и и и и и и и и	вово осо операто операто операто и и и и и и и и и и и и и и и и и и и	оопхпопхпанатальоопоопох хпопахопа Матика,	ооооооппинанана опохххханананана Меоркех.	илудия и и и и и и и и и и и и и и и и и и		E E G X E E E E X G E G G E E E E G G	с с		и ини и и и и и и и и и и и и и и и и и	осхи иннас хносоох иннооноо		на и и и и и и и и и и и и и и и и и и и
ALAMMONIAC EA WATER WAGE EAWAGE LICATE ESTERS LICATE ESTERS LICONE OIL LVER NITRATE (YDROL 500 YDROL	ш ш ш ш ш ш ш ш ш ш ш ш ш ш ш ш ш ш ш	G G G G G G G G G G G G G G G G G G G		неновениях X X неовеновение в соверси в сов	E E G C E G G E E X E G G C G G G G G C C G G G G G G G G G	л н с н х с н н с н х н с н к н с н к н с н х н с н х н с н х н с н х н с н х н с н х н с н х н с н х н с н х н	E G G E E E E X X X G E G G E G E E E E	E E G G E E E G C C C C C C C C C C C C	C E E E G E E E G G G E C E E G G G G G	E E G X E E E E X G E G G E E E E G G	E E C			ОСХЕ ЕЕЕХС ХЕОСООХ ЕЕЕОО	E E E E E E X X G E E G E X X E E E E E	E E E E E E E E E E E E E E E E E E E
EA WATER WAGE LICATE ESTERS LICATE OF SODA LICONE GREASE LICONE OIL LUCONE OIL VUPROL 5000 CYDROL 7000 TYPE 2 YDROL 5000 CYDROL 7000 TYPE 2 YDROL 5000 CYDROL 7000 TYPE 2 DA SASH DA LIME DDA ASH DDA LIME DDA ANTER DDA ANTER DDA ANTER DDIUM ACETATE DDIUM ALUMINATE DDIUM ACETATE DDIUM BISULFATE DDIUM BISULFATE DDIUM CANBONATE DDIUM CANDE DDIUM CANDE DDIUM CANDE DDIUM CANDE DDIUM HYDROCHLORITE DDIUM HYDROCHLORITE DDIUM METAPHOSPHATE DDIUM METAPHOSPHATE DDIUM PERBORATE DDIUM PERBORATE DDIUM SULFITE DDIUM SULFATE DDIUM SULFATE DDIUM SULFATE DDIUM SULFATE DDIUM SULFATE DDIUM SULFIDE TANNIC CHLORIDE TANNIC SULFIDE FANNOUS SULFIDE FANNOUS CHLORIDE TANNOUS CHLORIDE JLFUR CHLORIDE JLFUR CHLORIDE JLFUR CACID JLFUR CACID JLFUR CACID JLFUR CACID, 25% JLFURIC ACID, 25% JLFURIC ACID, 25% JLFURIC ACID, 50% - 96% JLFURIC ACID, 50% - 96% JLFURIC ACID, 70% JLFURIC ACID, 25% JLFURIC ACID, 70% JLFURIC ACID, 70% JLFURIC ACID, 70% JLFURIC ACID, 70% JLFURIC ACID ACID NNIC ACID NNIC ACID N	ш ш ш ш ш ш ш ш ш ш ш ш ш ш ш ш ш ш ш	G G G G G G G G G G G C X X G G C X X G G G G		не о не не и на кака и на постата и на постат На постата и на пост	E G G E E X E G G C G G G G E G C G G G G G G G G G	ш G X ш Ш C Ш X X G Ш Ш G G Ш G Ш Ш Ш Ш Ш Ш X Ш C Ш X Ш G	G G E E E E X X X X G E G G E G E E E E	E E G C C C C C C C C C C C C C C C C C	E E E G E E G G E C E E G G G G G G G G	E G X E E E X G E G G E E E G G	G E E C			СХЕ ЕЕЕХС ХЕССОСХ ЕЕЕСОС	E E E E E E E E E E E E E E E E E E E	
EWAGE LICATE OF SODA LICATE OF SODA LICONE GREASE LICONE OIL LVER NITRATE (YDROL 500 TYPE 2 (YDROL 500TYPE 2 (YDROL 500C (YDROL 7000 TYPE 2 DAP SOLUTIONS DDA SOLUTIONS DDA ASH DDA LIME DDA NITER DDA ANTER DDA ACETATE DDIUM ACETATE DDIUM ACETATE DDIUM BISULFITE DDIUM BISULFITE DDIUM BISULFITE DDIUM BORATE DDIUM BORATE DDIUM CARBONATE 10% - 15% DDIUM CARBONATE DDIUM CARBONATE DDIUM CARBONATE DDIUM CARBONATE DDIUM CARBONATE DDIUM CARBONATE DDIUM CARBONATE DDIUM CARBONATE DDIUM MORATE DDIUM CARBONATE DDIUM CARBONATE DDIUM CARBONATE DDIUM CARBONATE DDIUM CARBONATE DDIUM MORATE DDIUM MORATE DDIUM MORATE DDIUM MORATE DDIUM MORATE DDIUM HYDROKLORITE DDIUM METAPHOSPHATE DDIUM METAPHOSPHATE DDIUM PHOSPHATE DDIUM PHOSPHATE DDIUM SULFITE DDIUM SULFITE SULFITE SULFITE SULFITE SULFITE SULFITE SULFITE SULFIT	астативо о поти по о поти по о о поти по о о о о о о о о о о о о о о о о о о	G G G G G G C C X C X C X C C X C G G G G		Е G E E E E X X X E E G E E C E E E E E G G E E G G E G G E G G E E	G C E G G E E X E G G C G G G E G C G G G G G G G G G G	ОХШШСШХ ХОШШООШОШШШШШШХШСШХШО	G E E E E X X X G E G G E G E E E E C G C G C G	E G E E G G C G E E G G C G E E E G C C C X	E G E E E G G E C E E G G G G G G G G G	G X E E E E X G E G G E E E E G G	G E E C			х ш ш ш ш ц с с с с с с с с с с с с с с с	E E E E E E E E E E E E E E E E E E E	E E E E E E E E E E E E E E E E E E E
LICATE OF SODA LICONE GREASE LICONE OIL LVER NITRATE (YDROL 500 TYPE 2 (YDROL 500C (YDROL 500C (YDROL 700 TYPE 2 DAP SOLUTIONS DDA SAH DDA LIME DDA LIME DDA INTER DDA CAUSTIC DDIUM ACETATE DDIUM ACETATE DDIUM ACCABBONATE DDIUM BISULFATE DDIUM BISULFATE DDIUM BISULFATE DDIUM BISULFATE DDIUM BISULFATE DDIUM BORATE DDIUM BORATE DDIUM CABBONATE 10% - 15% DDIUM CABBONATE 10% - 15% DDIUM CHORIDE DDIUM CABBONATE DDIUM CABBONATE DDIUM CABBONATE DDIUM HOROMITE DDIUM HOPOCHLORITE DDIUM HYDROKLORITE DDIUM SULFATE DDIUM SULFATE DDIU	ш ш ш ш в в в в в в в в в в в в в в в в	G G G G G G C C X C X C X C C X C G G G G		Е Е Е Е Е Х Х Х Е Е О Е Е Е Е Е Е Е Е Е Е	E G G E E X E G C C G G G C C C C C G G G G G G G G	ш Ш С Ш Х	E E E E E E X X X X G E G G E G E G E E E E	E E G G C G E E G G C C C C C X	E E E G E E G G G E C E E G G G E G G G	E E E X G E G E X G E E E E G G	E C		E E E E E E E E E E E E E E E E E E E	Е Е Е Х С Х Е G C G G X Е Е Е G G E G G	E E E E X X G E E G E X X E E E E C	E E E E E E E E E E E E E E E E E E E
LICONE GREASE LICONE OIL LICONE OIL LICONE OIL LICONE OIL LICEN NITRATE (YDROL 5000 TYPE 2 (YDROL 5000 TYPE 2 DAP SOLUTIONS DDA SOLUTIONS DDA ASH DDA LIME DDA INTER DDA ASH DDA LIME DDA MITER DDA ASH DDA MITER DDA ASH DDA LIME DDI M ALUMINATE DDIUM ALUMINATE DDIUM ALUMINATE DDIUM ALUMINATE DDIUM ALORINATE DDIUM BISULFITE DDIUM BORATE DDIUM BORATE DDIUM CARBONATE 10% - 15% DDIUM CARBONATE 10% - 15% DDIUM CARBONATE DDIUM CARBONATE DDIUM CARBONATE DDIUM CARBONATE DDIUM CARBONATE DDIUM CARBONATE DDIUM HORATE DDIUM HORATE DDIUM HOROKIDE (CAUSTIC SODA) DDIUM HYDROCHLORITE DDIUM METAPHOSPHATE DDIUM METAPHOSPHATE DDIUM PHOSPHATE DDIUM PHOSPHATE DDIUM SULFITE DDIUM SULFITE SULFITE SULFITE SULFITE SULFITE SULFITE SULFITE	ш ш ш д д д д д д д д д д д д д д д д д	G G G G G G C C X C X C X C C X C G G G G		Е Е Е X X X E E G E E C E E E E E E E E G G E E G G E G G E E G G E E G G E E G G E	G G E E X E G G C G G G G G G G G G G G G G G G G	ш С ш Х Х G Ш Ш G G Ш G Ш Ш Ш Ш Ш Ш Х Ш С Ш Х Ш G	E E E E E X X X G E G G E G E E E E E C G C G C G C G	E E G X X E E G G C G E E E G C C C X	E E G G G G E G G G E G G G G G G G G G	E E X X G E G E X G E G G E E E E G G	E C		E E E E E E E E E E E E E E E E E E E	Е Е X C X E G C G G X E E E G G G G G G G G G G G G G G	E E E X X G E E G E E E E E E E C	E E E E E E E E E E E E E E E E E E E
LICONE OIL LVER NITRATE (YDROL 500 TYPE 2 (YDROL 500C (YDROL 500C (YDROL 500C (YDROL 500C (YDROL 500C (YDROL 7000 TYPE 2 DAP SOLUTIONS DDA SH DDA NITER DDA NITER DDA NITER DDA NITER DDA NITER DDA NITER DDI M ACETATE DDIUM ACETATE DDIUM BISULFATE DDIUM BISULFATE DDIUM BISULFATE DDIUM BISULFATE DDIUM BORATE DDIUM CARBONATE 10% - 15% DDIUM CARBONATE DDIUM CARBONATE DDIUM CANIDE DDIUM CANIDE DDIUM CANIDE DDIUM CANIDE DDIUM HYPOCHLORITE DDIUM HYPOCHLORITE DDIUM HYPOCHLORITE DDIUM HYPOCHLORITE DDIUM NITRATE DDIUM PEROXIDE DDIUM PEROXIDE DDIUM PEROXIDE DDIUM SULFATE DDIUM SULFIDE FANNC CHLORIDE FANNOUS SULFIDE FEARIC ACID TODDARD SOLVENT TYRENE MONOMER JLFUR CHLORIDE JLFUR CACID, 25% JLFURIC ACID, 2	шшшшшшшоошолшшшшшшшшшшшш	G G G G G G C C X C X C X C C X C G G G G		них X X и и и и и и и и и и и и и и и и и	G G E E X E G G C G G G G G G G G G G G G G G G G	С ш Х С ш ш С С Ш С Ш С Ш С Ш Х Ш С Ш Х Ш С Ш Х Ш С Ш Х Ш С Ш Х Ш С Ш Х Ш С Ш Х Ш С Ш Х Ш С Ш	E E X X X G E G G E G E E E E E E C G C G C G	E G X X E E G G C G E E E E E G C C C X	E E G G G G E G G G E G G G G G G G G G	E E X X G E G E X G E G G E E E E G G	E C		E E E E E E E E E E E E E E E E E E E	Е Е X C X E G C G G X E E E G G G G G G G G G G G G G G	E E X X G E E G E X X E E E E E E E C	E E E E E E E C E E E E E G
LVER NITRATE (YDROL 500 TYPE 2 (YDROL 500C (YDROL 500C (YDROL 500C (YDROL 7000 TYPE 2 DAP SOLUTIONS DDA SAH DDA LIME DDA XITER DDA CAUSTIC DDIUM ACETATE DDIUM ACETATE DDIUM ACCIABEONATE DDIUM ACCIABEONATE DDIUM BISULFATE DDIUM BISULFATE DDIUM BORATE DDIUM BORATE DDIUM CABBONATE 10% - 15% DDIUM CABBONATE 10% - 15% DDIUM CHORIDE DDIUM CYANIDE DDIUM CYANIDE DDIUM CYANIDE DDIUM HYDROKLORITE DDIUM HYDROKLORITE DDIUM HYDROKLORITE DDIUM HYDROKLORITE DDIUM HYDROKLORITE DDIUM HYDROKLORITE DDIUM HYDROKLORITE DDIUM HYDROKLORITE DDIUM PERBORATE DDIUM PERBORATE DDIUM PERBORATE DDIUM PERBORATE DDIUM PLEADCHATE DDIUM SULFATE DDIUM THIOSULFATE DYBEAN OIL TANNIC SULFIDE TANNOUS CHLORIDE TANNOUS CHLORIDE TANNOUS CHLORIDE TANNOUS SULFIDE TANNOUS SULFIDE TANNOUS SULFIDE TANNOUS SULFIDE TANNOUS SULFIDE TANNOUS SULFIDE TANNOUS SULFIDE TEARIC ACID JLFUR CHLORIDE JLFUR CHLORIDE JLFUR TRIOXIDE, DRY JLFURIC ACID, 25% JLFURIC ACID, 25% JLFURIC ACID, 50% - 96% JLFURIC ACID, 50% - 96% JLFURIC ACID, 25% JLFURIC ACID, 70% - 85% JLFURIC ACID, 10% - 85% JLFURIC ACID ACID NNIC ACID A, BITUMINOUS	ш ш ш ш ш ш ш ш ш ш ш в в в и в в в в в	G G G G G G C C X C X C X C C X C G G G G		н X X X н н G и н С и н и и и и и и G G и и G G и G G и и	GEEXEG GCGGGEG GCGGGG	шх хошшовцоцииции и хисихио	E X X X G E G G E G E E E E E E E E C G C G C G	G X E E G C G E E E E E E G C C C X	E G E E G G G E G G G E G G G	E X G E G E X G E G G E E E G G	E C		E E E E E E E E E E E E E E E E E E E	н х с х н G с G G х н н н G G н G G	E X X G E E G E X X E E E E E E E E E E	E E E E E E E C E E E E E G
SYDROL 500E SYDROL 500C SYDROL 500C SYDROL 7000 TYPE 2 DAP SOLUTIONS DDA LIME DDA NITER DDA ANTER DDIM ACETATE DDIUM ACETATE DDIUM BISULFATE DDIUM BORATE DDIUM CARBONATE DDIUM BORATE DDIUM BORATE DDIUM BORATE DDIUM CARBONATE 10% - 15% DDIUM CORIDE DDIUM CARBONATE DDIUM PORATE DDIUM HYDROCHLORITE DDIUM HYDROTE DDIUM HYDROTE DDIUM HYDROCHLORITE DDIUM HYDROCHLORITE DDIUM HYDROCHLORITE DDIUM HYDROCHLORITE DDIUM HYDROCHLORITE DDIUM METAPHOSPHATE DDIUM PEROXIDE DDIUM PEROXIDE DDIUM PEROXIDE DDIUM SULFATE DDIUM SULFITE DDIUM	о о ш ш ш ш ш ш ш ш ш ш ш ш ш	G G G G G G C C X C X C X C C X C G G G G		X X	E E X E G G C C G G C C G G G C C G G G G G G	х G ш ш G ш G ш G ш ш ш ш ш ш ш Х ш С ш Х ш G	X X X G E G G E G G E G G E E E E E E E	X E E G G C G E E E G G C C C X	E E E G G G E C E E G G G E G G G G G	X G E G E X G E G G E E E E G G	E C			С Х Ш В С С С С С С С С С С С С С С С С С С	X G E E G E X X E E E E E E E E C	
GYDROL 500C GYDROL 7000 TYPE 2 DAP SOLUTIONS DDA SOLUTIONS DDA ASH DDA ASH DDA ASH DDA ASH DDA AUMINATE DDIUM BICARBONATE DDIUM BISULFATE DDIUM BISULFATE DDIUM CHABONATE 10% - 15% DDIUM CARBONATE 10% - 15% DDIUM CHAORATE DDIUM CARBONATE 10% - 15% DDIUM CHAORATE DDIUM CARBONATE 10% - 15% DDIUM CHAORATE DDIUM CHAORATE DDIUM HYDROCHLORITE DDIUM HYDROCHLORITE DDIUM HYDROCHLORITE DDIUM HYDROCHLORITE DDIUM HYDROXIDE (CAUSTIC SODA) DDIUM HYDROXIDE DDIUM HYDROXIDE DDIUM BULFATE DDIUM PERONATE DDIUM SULFATE DDIUM SULFATE DDIUM SULFATE DDIUM SULFATE DDIUM SULFITE DDIUM SULFITE DDIUM SULFITE DDIUM THIOSULFATE DYBEAN OIL TANNIC SULFIDE FANNOUS CHLORIDE TANNIC	О шОшшшшшшшшО ОшшшО О шшшшшшшшш	G G G G G C C X G G C X X G G G G G G G		Х Х Е Е О Е Е С Е Е Е Е Е Е Е Е Е О О Е Е О О Е Е О О Е Е О О Е Е О О Е Е О О Е Е	EXEG GC GGGGE G CC GGG	З Ш Ш З Ш В Ш Ш Ш Ш Х Ш С Ш Х Ш З	X X G E G G E G E E E E E E E C G C G C G C	E E G C G E E G E E E G C C X	E E G G G E C E E G G G G G	G E G E E E G G	E C			X E G C G G X E E E G G E G G	X G E G G E X X E E E E E E C	
GYDROL 7000 TYPE 2 DAP SOLUTIONS DDA ASH DDA LIME DDA LIME DDA LIME DDA ANTER DDA, CAUSTIC DDIUM ACETATE DDIUM BICARBONATE DDIUM BISULFATE DDIUM BISULFATE DDIUM BISULFATE DDIUM BORATE DDIUM CHABONATE DDIUM CHABONATE DDIUM CHABONATE DDIUM CHANDE DDIUM CHORIDE DDIUM MYDROTHE DDIUM HYDROTHORITE DDIUM HYDROXIDE (CAUSTIC SODA) DDIUM HYDROXIDE (CAUSTIC SODA) DDIUM HYDROXIDE DDIUM METAPHOSPHATE DDIUM METAPHOSPHATE DDIUM NURATE DDIUM PEROXIDE DDIUM SULFATE DDIUM SULFATE DDIUM SULFATE DDIUM SULFITE DDIUM SULFATE DYBEAN OIL FANNIC CHLORIDE T	ш д ш ш ш ш ш ш д д д ш ш д д ш д ц ш ш ш ш	G G G C C C C C C C C C C C C C C C C C		Х Е Е G Е Е С Е Е Е Е Е Е Е Е С Е Е Е Е С Е	X E G G C G G G G G G G G G G G G G G G G	З Ш Ш З Ш В Ш Ш Ш Ш Х Ш С Ш Х Ш З	X G E G G E E E E E E E C G C G C G	E E G C G E E G E E E G C C X	E G G G E G G G G G G G G G G G G G G G	G E G E E E G G	с			EGCGGX EEEGGEGG	G E G E X X E E E E E E E E C	
DAP SOLUTIONS DDA ASH DDA LIME DDA LIME DDA NITER DDA, CAUSTIC DDIUM ACETATE DDIUM ACETATE DDIUM BISULFATE DDIUM BISULFATE DDIUM BISULFITE DDIUM BISULFATE DDIUM BORATE DDIUM CARBONATE 10% - 15% DDIUM CARBONATE 10% - 15% DDIUM CARBONATE 10% - 15% DDIUM CARBONATE DDIUM CARBONATE DDIUM CARBONATE DDIUM CARBONATE DDIUM PORATE DDIUM PORATE DDIUM HYDROCHLORITE DDIUM HYDROCHLORITE DDIUM HYDROCHLORITE DDIUM HYDROCHLORITE DDIUM HYDROCHLORITE DDIUM METAPHOSPHATE DDIUM METAPHOSPHATE DDIUM PEROXIDE DDIUM PEROXIDE DDIUM PEROXIDE DDIUM PEROXIDE DDIUM PEROXIDE DDIUM SULFITE DDIUM SULFITE DDIUM SULFITE DDIUM SULFITE DDIUM SULFITE DDIUM SULFIDE FANNIC SULFIDE FANNOUS SULFIDE FANNOUS SULFIDE FARIC ACID JLFUR CHLORIDE JLFUR CHLORIDE JLFUR CACID 25% JLFUR CACID, 25% JLFURIC ACID, 10% - 85% JLFURIC ACID NANIC SULFIDE	о ш ш ш ш ш ш ш в о о ш в в о о щ ш ш ш ш ш ш ш ш ш ш ш ш ш ш ш ш ш	G G C X G G G G G G G G G G G G G G G G		Е	Е G G C G C G G G G E G C C G G G G C C G G G G	З Ш Ш З Ш В Ш Ш Ш Ш Х Ш С Ш Х Ш З	G E G E E E E E E C G C G C G	E E G C G E E G E E E G C C X	E G G G E G G G G G G G G G G G G G G G	G E G E E E G G	с			EGCGGX EEEGGEGG	E G E X E E E E E E E E C	
DDA ASH DDA LIME DDA LIME DDA NITER DDA, CAUSTIC DDIUM ACETATE DDIUM BICARBONATE DDIUM BISULFATE DDIUM BISULFATE DDIUM BISULFITE DDIUM BISULFITE DDIUM CHAORIDE DDIUM CHAORIDE DDIUM CHAORIDE DDIUM CHAORIDE DDIUM HYDROCHLORITE DDIUM SULFATE DDIUM PERBORATE DDIUM SULFATE DDIUM SULFATE DDIUM SULFATE DDIUM SULFATE DDIUM SULFATE DDIUM SULFATE DYBEAN OIL FANNIC SHLORIDE FANNIC SHLORIDE FANNIC SULFIDE TANNIC SULFIDE TANNIC SULFIDE TANNIC SULFIDE TANNIC SULFIDE TANNIC SULFIDE TANNIC SULFIDE TANNIC SULFIDE TANNIC SULFIDE TANNIC SULFIDE JLFUR CACID JLFUR CACID JLFUR TRIOXIDE, DRY JLFURIC ACID, 25% JLFURIC ACID, 25% JLFURIC ACID, 50% - 96% JLFURIC ACID, 25% JLFURIC ACID, 50% - 96% JLFURIC ACID, 50% - 96% JLFURIC ACID, 50% - 50% JLFURIC ACID, 50% - 50% JLFURIC ACID, 70% - 85% JLFUROUS ACID, 10% - 85% JTAN ALL OIL ALLOW INNIC ACID N, BTUMINOUS	и ш ш ш ш ш ш ш в в в в в в в в в в в в	G G C C C C C C C C C C C C C C C C C C		Е <u>G</u> Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш	С С С С С С С С С С С С С С С С С С С	ш Щ G G H G H H H H H H H H X H C H X H G	E G G E E E E E E C G C G C G	E G G C G E E E E E G C C X	G E G G G G E E G G G E G G G G G G G G	E G E X G E G G E E E G G G G G	с			G G G G G X E E E G G G G G G G G G G G	E G E X X E E E E E E C	
DDA NITER DDA, CAUSTIC DDI, ACETATE DDI, ACETATE DDIUM BICARBONATE DDIUM BISULFITE DDIUM BISULFITE DDIUM BISULFITE DDIUM CARBONATE 10% - 15% DDIUM CARBONATE 10% - 15% DDIUM CARBONATE 10% - 15% DDIUM CARBONATE 10% - 15% DDIUM CARBONATE DDIUM CARBONATE DDIUM HYDRATE DDIUM HYDRATE DDIUM HYDRATE DDIUM HYDROCHLORITE DDIUM HYDROCHLORITE DDIUM HYDROCHLORITE DDIUM HYDROCHLORITE DDIUM HYDROCHLORITE DDIUM HYDROCHLORITE DDIUM METAPHOSPHATE DDIUM METAPHOSPHATE DDIUM PHOSPHATE DDIUM PHOSPHATE DDIUM SULFITE DDIUM SULFITE DDIUM SULFITE DDIUM SULFITE DDIUM SULFITE DDIUM SULFIDE TANNIC SULFIDE TANNIC SULFIDE TANNIC SULFIDE TANNOUS SULFIDE TEARIC ACID TODDARD SOLVENT TYRENE MONOMER JLFUR CHLORIDE JLFUR CHLORIDE JLFUR CACID JLFUR CACID, 25% - 50% JLFURIC ACID, 25% JLFURIC ACID, 10% - 85% JLFUROUS ACID, 10% - 85% JLFUROUS ACID, 10% - 85% JLFURIC ACID NNIC ACID NNIC ACID NNIC ACID NNIC ACID NNIC ACID N, BITUMINOUS	ш ш ш ш ш ш д д ш ш д д ш д д ш ш ш ш ш	C X G G G G C X G X X G X X G G X G G G G		ш ш с ц ш ш ш ш ш б б ш ш б б ш в б б ш ц в ц ш ш ш ш в в в в в в в в в в в в	C G G G G G G G G C C G G G G G G G G G	G G E G E E E E E E E X E C E X E G	G E G E E E E E C G C G C G	G C G E E G C C C X	G G G E E G G G G G G G G G G	E X G E G G E E E G G G G G			E E E E E E E E E E	G G K E E E G G G G G	E X E E E E E E E C	E E E E E E E E E E E E E E E E E E E
DDA, CAUSTIC DDIUM ACETATE DDIUM ACIMINATE DDIUM BISULFATE DDIUM BISULFATE DDIUM BISULFATE DDIUM BISULFATE DDIUM CHLORIDE DDIUM CHLORIDE DDIUM CHLORIDE DDIUM CHLORIDE DDIUM CHLORIDE DDIUM HYDROCHLORITE DDIUM METAPHOSPHATE DDIUM PERBORATE DDIUM PERBORATE DDIUM SULFATE DDIUM SULFATE DDIUM SULFATE DDIUM SULFATE DDIUM SULFATE DDIUM SULFATE DDIUM SULFATE DDIUM SULFATE DDIUM SULFIDE TANNIC CHLORIDE TANNIC SULFIDE TANNIC SULFIDE TEARIC ACID TODARD SOLVENT TYRENE MONOMER JLFUR CHLORIDE JLFUR CACID JLFUR TRIOXIDE, DRY JLFUR CACID, 25% JLFURIC ACID, 25% JLFURIC ACID ACID ACID	ш ш ш ш ш ш छ छ ш ш ш छ छ ш ш ш ш ш ш ш	C X G G G G C X G X X G X X G G X G G G G		Е С Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш	C G G G G G G G G C C G G G G G G G G G	<u> </u>	E G E E E E E E C G C G C G	C G E E G E E G C C X	G G G E E G G G G G G G G G G	E X G E G G E E E G G G G G			E E E E E E E E	G X E E E G G G G	X E E E E E E E E E C	E E E E C E E E E G
DDIUM ACETATE DDIUM BLOCARBONATE DDIUM BISULFATE DDIUM BISULFATE DDIUM BISULFATE DDIUM BORATE DDIUM CABBONATE 10% - 15% DDIUM CABBONATE 10% - 15% DDIUM CHADIDE DDIUM CHANIDE DDIUM CHANIDE DDIUM CYANIDE DDIUM HYDRATE DDIUM HYDROKLORITE DDIUM SULFATE DDIUM SULFATE DDIUM SULFATE DDIUM SULFATE DDIUM SULFATE DDIUM SULFATE DDIUM SULFATE DDIUM SULFATE DDIUM SULFIDE TANNIC SULFIDE TANNIC SULFIDE TANNIC SULFIDE TANNOUS CHLORIDE TANNOUS SULFIDE TEARIC ACID TYRENE MONOMER JLFUR CHLORIDE JLFUR CHLORIDE JLFUR CACID 25% JLFURC ACID 25% JLFURIC ACID, 25% JLFURIC ACID, 25% JLFURIC ACID, 25% JLFURIC ACID, 25% JLFURIC ACID, 25% JLFURIC ACID, 50% - 96% JLFURIC ACID, 50% - 96% JLFURIC ACID, 70% - 85% JTAN ALL OIL ALOW INNIC ACID NR, BITUMINOUS	ш ш ш ш ш д д ш ш ш д д д д д д д д д д	X G G G C X G X X X G		С Е Е Е Е Е Е Е Е Е Е Е Е Е Е Е Е Е Е Е	G G G G G G G C C G G G G G G G G G G G	E G E E E E E E E C E X E G	G E E E E E E C G C G C G	G E E E E E G C C X	G G E C E E G G G G G G G G G G G G G G	X G E G G E E E G G			E E E E E E E E	X E E E G G E G G G G	X E E E E E E E C	E E E C E E E G
DDIUM ALUMINATE DDIUM BLCARBONATE DDIUM BULFATE DDIUM BISULFATE DDIUM BISULFATE DDIUM CARBONATE 10% - 15% DDIUM CARBONATE 10% - 15% DDIUM CARDONATE 10% - 15% DDIUM CARDONATE DDIUM CANNIDE DDIUM CARDONATE DDIUM HYDRATE DDIUM HYDROXIDE (CAUSTIC SODA) DDIUM METAPHOSPHATE DDIUM METAPHOSPHATE DDIUM METAPHOSPHATE DDIUM PEROXIDE DDIUM PLOSPHATE DDIUM SULFATE DDIUM SULFITE DDIUM SULFITE DDIUM SULFITE DDIUM SULFIDE TANNIC CHLORIDE TANNIC SULFIDE TANNIC SULFIDE TANNOUS SULFIDE TEARIC ACID TODDARD SOLVENT TYRENE MONOMER JLFUR CHLORIDE JLFUR CHLORIDE JLFUR CACID, 25% JLFURIC ACID, 25% JLFURIC ACID	н н н н н о о н н н о о о н н н н н н н	G G C X G X G	E E E E E C E G E E E E E E E E E E E E	E E E E E E G G E E G G E E	C G G G G G G G G G G G G G G G G G G G	G E E E E E E X E C E X E G	E E E E C G C G G G	E E E E E G C C X	G E C E E G G E G G G	G E E E G G	с		E E E E E E E E	E E G G E G G G	E E E E E E E C	E E C E E E G
DDIUM BISULFATE DDIUM BISULFATE DDIUM BISULFITE DDIUM CHARATE DDIUM CHARATE DDIUM CARBONATE 10% - 15% DDIUM CHARATE DDIUM CHARATE DDIUM CHARATE DDIUM HYDRATE DDIUM HYDRATE DDIUM HYDROCHLORITE DDIUM HYDROCHLORITE DDIUM HYDROCHLORITE DDIUM HYDROCHLORITE DDIUM HYDROCHLORITE DDIUM HYDROCHLORITE DDIUM HYDROCHLORITE DDIUM HYDROCHLORITE DDIUM METAPHOSPHATE DDIUM PERBORATE DDIUM PERBORATE DDIUM PHOSPHATE DDIUM SULFATE DDIUM SULFATE DDIUM SULFATE DDIUM SULFITE DDIUM SULFITE DDIUM SULFITE DDIUM THIOSULFATE DYBEAN OIL FANNIC CHLORIDE FANNIC SULFIDE TEARIC ACID TODDARD SOLVENT TYRENE MONOMER JLFUR CHLORIDE JLFUR CHLORIDE JLFUR TRIOXIDE, DRY JLFUR CACID JLFUR TRIOXIDE, DRY JLFURIC ACID, 25% JLFURIC ACID, 50% - 96% JLFURIC ACID, 50% - 96% JLFURIC ACID, 10% - 85% JTAN	ш ш ш ш д д ш ш ш д д д д ц ш ш ш ш ш ш	G G C X G X G	E E E C E G E E E E E E E E	E E E E E G G E E G G E E G G E E E G G E E G G E E G G E E G G E E G G E E G G E E G G E E G G G E E G G G E G	C G G G G G G G G G G G G G G G G G G G		E E E E E C G C G C G	G E E E E G C C X	C E E G G E G G G	G G E E E G G	с		E E E E	E E G G E G G G	E E E E C	E C E E E G
DDIUM BISULFITE DDIUM CHARDATE DDIUM CARBONATE 10% - 15% DDIUM CARBONATE 10% - 15% DDIUM CANDE DDIUM CANDE DDIUM CYANIDE DDIUM CYANIDE DDIUM HYDRATE DDIUM HYDROXIDE (CAUSTIC SODA) DDIUM HYDROXIDE (CAUSTIC SODA) DDIUM HYDROXIDE (CAUSTIC SODA) DDIUM HYDROXIDE (CAUSTIC SODA) DDIUM METAPHOSPHATE DDIUM METAPHOSPHATE DDIUM METAPHOSPHATE DDIUM PEROXIDE DDIUM PEROXIDE DDIUM PEROXIDE DDIUM SULFATE DDIUM SULFATE DDIUM SULFATE DDIUM SULFITE DDIUM SULFITE DDIUM SULFIDE TANNIC SULFIDE TANNOUS SULFIDE TANNOUS SULFIDE TEARIC ACID TODDARD SOLVENT TYRENE MONOMER JLFUR CHLORIDE JLFUR CHLORIDE JLFUR CHLORIDE JLFUR CACID 25% JLFURIC ACID, 25% - 50% JLFURIC ACID, 70% - 85% JTAN NLL OIL ALOW NNIC ACID N, BITUMINOUS	шшаоошоосы палария пал	G G C X G X G	E E E C E G E E E E E E E E E	Е Е Е G G E E G G E E	G G G C C G G G G G G G G	E E E E X E C E X E G	E E E E C G C G C G	E E E E G C C X	E E G G G G	G E E E G G	с	E E E E E	E E E E	E G E G G	E E E E C	C E E E G
DDIUM BORATE DDIUM CABONATE 10% - 15% DDIUM CHLORIDE DDIUM CYANIDE DDIUM DICHROMATE DDIUM DICHROMATE DDIUM HYDRATE DDIUM HYDROCHLORITE DDIUM HYDROCHLORITE DDIUM HYDROCHLORITE DDIUM HYDROCHLORITE DDIUM HYDROCHLORITE DDIUM HYDROCHLORITE DDIUM PEROXIDE DDIUM PEROXIDE DDIUM PEROXIDE DDIUM PEROXIDE DDIUM PEROXIDE DDIUM PEROXIDE DDIUM SULFATE DDIUM SULFATE DDIUM SULFATE DDIUM SULFITE DDIUM SULFITE DDIUM SULFIDE FANNIC SULFIDE FANNIC SULFIDE FANNUS SULFIDE FEARIC ACID TODDARD SOLVENT TYRENE MONOMER JLFUR CHLORIDE JLFUR CHLORIDE JLFUR CACID 25% JLFUR CACID 25% JLFUR CACID, 25% - 50% JLFURIC ACID, 25% JLFURIC ACID, 50% JLFURIC ACID, 7% JLFURIC ACID, 7% JLF	ноошинопо сими и и и и и и	G G C X G X G X G	E E C E G E E E E E E E E E	Е Е В В В В В В В В В В В В В В В В В В	G G E G C C G G G G G G G	ш ш ш ж ш С ш ж ш G	E E C G C G C G	E E E G C C X	E G E G G G	E E E G G	с	E E E E E	E E E	G G E G G	E E E C	E E E G
DDIUM CARBONATE 10% - 15% DDIUM CHLORIDE DDIUM CHLORIDE DDIUM DICHROMATE DDIUM HYDRATE DDIUM HYDROCHLORITE DDIUM HYDROCHLORITE DDIUM HYDROCHLORITE DDIUM HYDROCHLORITE DDIUM HYDROCHLORITE DDIUM HYDROCHLORITE DDIUM METAPHOSPHATE DDIUM PERBORATE DDIUM PERBORATE DDIUM PERBORATE DDIUM PERBORATE DDIUM SULFATE DDIUM SULFATE DDIUM SULFITE DDIUM SULFITE DDIUM THIOSULFATE DYBEAN OIL TANNIC CHLORIDE TANNIC SULFIDE TANNIC SULFIDE TANNOS CHLORIDE JLFUR JLFUR CACID JLFUR JLFUR CACID CONC. TO 98% JLFURIC ACID, 25% JLFURIC ACID, 10% - 85% JTAN ALL OIL ALLOW INNIC ACID N, BTUMINOUS	G G Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш	G G C X G X G X G	E E C E G E E E E E E E E E	Е <u></u> Е <u></u> Е <u></u> Е <u></u> Е <u></u> Е <u></u> Е <u></u> Е <u></u>	G E C C G G G G G	Е Е X Е C Е X Е G	E E C G C G C G	E E G C C X	G G E G G G	E E G G	с	E E E E	E E E	G E G G	E E C	E E G
DDIUM CHLORIDE DDIUM CYANIDE DDIUM CYANIDE DDIUM HYDRATE DDIUM HYDROXIDE (CAUSTIC SODA) DDIUM METAPHOSPHATE DDIUM PERBORATE DDIUM PERBORATE DDIUM PERBORATE DDIUM PERBORATE DDIUM PERBORATE DDIUM SULFATE DDIUM SULFATE DDIUM SULFATE DDIUM SULFITE DDIUM SULFITE DDIUM SULFITE DDIUM SULFITE DDIUM SULFITE DDIUM SULFITE DDIUM SULFITE DDIUM SULFITE DTIUM THIOSULFATE DYBEAN OIL FANNIC CHLORIDE FANNOUS CHLORIDE FANNOUS CHLORIDE FANNOUS SULFIDE TEARIC ACID TODDARD SOLVENT TYRENE MONOMER JLFUR CHLORIDE JLFUR CHLORIDE JLFUR CHLORIDE JLFUR TRIOXIDE, DRY JLFURC ACID, 25% JLFURIC ACID, 25% JLFURIC ACID, 25% JLFURIC ACID, 50% - 96% JLFURIC ACID, 50% - 96% JLFURIC ACID, FUMING JLFUROUS ACID, 10% - 85% JTAN VLL OIL VLOW VNNIC ACID NR, BITUMINOUS	G Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш	G G C X G X G G	E E G E E E E E E E	E E G G E E G G E E G G E E G G E E G G E E G G E E G G E E G G E E G G E E G G E E G G E E G G E E E G G G E E E G G G E E E G G G E E E G G G E E E E E E G G E	E G C G G G	E E X E C E X E G	E C G C G C G	E E G C C X	G E G G G	E G G	С	E E E	E	E G G	E E C	E E G
DDIUM CYANIDE DDIUM HYDROKIDE DDIUM HYDROKIDE (CAUSTIC SODA) DDIUM HYDROCHLORITE DDIUM HYDROCHLORITE DDIUM HYDROCHLORITE DDIUM HYDROCHLORITE DDIUM METAPHOSPHATE DDIUM METAPHOSPHATE DDIUM PEROXIDE DDIUM PEROXIDE DDIUM PEROXIDE DDIUM PEROXIDE DDIUM SULFATE DDIUM SULFITE DDIUM SULFITE DDIUM SULFITE DDIUM SULFITE DDIUM SULFITE DDIUM SULFIDE FANNIC CHLORIDE FANNIC SULFIDE FANNIC SULFIDE FARICACID TODDARD SOLVENT TYRENE MONOMER JLFUR CHLORIDE JLFUR CHLORIDE JLFUR CACID JLFUR CACID 25% JLFUR CACID, 25% JLFURICACID, 50% JLFURICACID, 25% JLFURICACID, 25%	Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш 	G C X G X X G	E C E G E E E E E	E G G E E G G E G G E E C G E E E G G E E C G G E E E G G G E E E G G G E E E G G G E E E G G G E E E G G G E E E G G G E E E G G G E E E G G E E E G G G E E E G G E E E G G E E E E E G G E E E E G G E	G C G G G	E X E C E X E G	E C G C G C G	E G C C X	E G G	E G G		E E E	E	G G	E C	E G
DDIUM HYDRATE DDIUM HYDROXIDE (CAUSTIC SODA) DDIUM HYDROXIDE (CAUSTIC SODA) DDIUM HYPOCHLORITE DDIUM METAPHOSPHATE DDIUM METAPHOSPHATE DDIUM PERBORATE DDIUM PERBORATE DDIUM PERBORATE DDIUM SULFATE DDIUM SULFATE DDIUM SULFATE DDIUM SULFATE DDIUM SULFATE DDIUM SULFIDE TANNIC CHLORIDE TANNIC SULFIDE TANNIC SULFIDE TANNIC SULFIDE TANNIC SULFIDE TEARIC ACID TODDARD SOLVENT TYRENE MONOMER JLFUR CHLORIDE JLFUR DJLFUR CHLORIDE JLFUR CHLORIDE JLFUR TRIOXIDE, DRY JLFURIC ACID, 25% JLFURIC ACID, 25% JLFURIC ACID, 25% JLFURIC ACID, 25% JLFURIC ACID, 50% - 96% JLFURIC ACID, 50% - 96% JLFURIC ACID, 10% - 85% JTAN VLL OIL VLOW VNNIC ACID NR, BTUMINOUS	Ш G Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш Ш	X G X X G	E G E E E E E	G E E G G E E	C G G G	E C E X E G	G C G C G	G C C X	G G	G		Е	E			
DDIUM HYDROCHLORITE DDIUM HYDROXIDE (CAUSTIC SODA) DDIUM HYDROXIDE (CAUSTIC SODA) DDIUM POCHLORITE DDIUM NITRATE DDIUM NITRATE DDIUM PEROXIDE DDIUM PEROXIDE DDIUM PHOSPHATE DDIUM SULFATE DDIUM SULFATE DDIUM SULFITE DDIUM SULFITE DDIUM SULFITE DDIUM SULFIDE TANNIC SULFIDE TANNIC SULFIDE TANNIC SULFIDE TANNIC SULFIDE TANNOUS SULFIDE TEARIC ACID TODDARD SOLVENT TYRENE MONOMER JLFUR CHLORIDE JLFUR CHLORIDE JLFUR CACID JLFUR CACID, 25% JLFURIC ACID, 25% JLFURIC ACID CAR	G ш G G ш ш ш ш ш ш ш ш ш	X G X X G	G E E E E E E	E E G G E G G E E E	C G G G	C E X E G	C G C G	C C X	G							t F
DDIUM HYDROXIDE (CAUSTIC SODA) DDIUM HYPOCHLORITE DDIUM HYPOCHLORITE DDIUM NITRATE DDIUM PERORATE DDIUM PERORATE DDIUM PERORATE DDIUM SULFATE DDIUM SULFATE DDIUM SULFIDE DDIUM SULFITE DDIUM THIOSULFATE DDIUM THIOSULFATE DDIUM THIOSULFATE DDIUM SULFIDE FANNIC CHLORIDE FANNIC SULFIDE FEARIC ACID FEARIC ACID JLFUR JLFUR CHLORIDE JLFUR TRIOXIDE, DRY JLFUR TRIOXIDE, DRY JLFUR CACID, 25% - 50% JLFURIC ACID, 10% - 85% JTAN ALL OIL ALLOW NNIC ACID R	E G G E E E E E E	X G X X G	E G E E E E E	E G G E G G E E	C G G G	E X E G	G C G	C X				E		C C	E	G
DDIUM HYPOCHLORITE DDIUM METAPHOSPHATE DDIUM METAPHOSPHATE DDIUM PERBORATE DDIUM PERBORATE DDIUM PERBORATE DDIUM PHOSPHATE DDIUM SULFATE DDIUM SULFATE DDIUM SULFIDE DDIUM SULFITE DDIUM SULFITE DDIUM THIOSULFATE DYBEAN OIL FANNIC SULFIDE TANNIC CHLORIDE TANNIC SULFIDE TEARIC ACID TODDARD SOLVENT TYRENE MONOMER JLFUR CACID JLFUR CACID JLFUR TRIOXIDE JLFUR TRIOXIDE JLFUR TRIOXIDE JLFUR CACID, 25% JLFURIC ACID, 50% - 96% JLFURIC ACID, FUMING JLFUROUS ACID, 10% - 85% JTAN ALL OIL ALOW INNIC ACID R, BITUMINOUS	G E E E E E E E E E E E	X G X X G	G E E E E E	G G E G G E E	C G G G	E G	C G	Х		G G	с	E	E	l č	L C	E
DDIUM NITRATE DDIUM PERBORATE DDIUM PEROXIDE DDIUM PHOSPHATE DDIUM SULCATE DDIUM SULCATE DDIUM SULFITE DDIUM SULFIDE DDIUM SULFIDE DDIUM SULFIDE TANNIC CHLORIDE TANNIC SULFIDE TANNOUS SULFIDE TANNOUS SULFIDE TEARIC ACID TEARIC ACID JLFUR CHLORIDE JLFUR CHLORIDE JLFUR CHLORIDE JLFUR TRIOXIDE, DRY JLFUR TOXIDE JLFUR TOXIDE JLFUR TOXIDE JLFUR TOXIDE JLFUR TOXIDE JLFUR CACID, 25% JLFURIC ACID, 25% JLFURIC ACID, 25% JLFURIC ACID, 50% - 98% JLFURIC ACID, FUMING JLFUROUS ACID, 10% - 85% JTAN ALL OIL ALLOW INNIC ACID NR, BITUMINOUS	E E E E E E E E E E E E E E E	X X G	E E E E	E G E E	G G	G			Х	С	С	E	E	C	C	G
DDIUM PERBORATE DDIUM PERBORATE DDIUM PEROXIDE DDIUM SUGSPHATE DDIUM SULFATE DDIUM SULFATE DDIUM SULFITE DDIUM SULFITE DDIUM THIOSULFATE DYBEAN OIL FANNIC SULFIDE FANNIC SULFIDE FANNIC SULFIDE FANNIC SULFIDE TANNIC SULFIDE TANNIC SULFIDE TEARIC ACID TODDARD SOLVENT TYRENE MONOMER JLFUR CACID TODDARD SOLVENT TYRENE MONOMER JLFUR CACID SOLVENT JLFUR CACID CONC. TO 98% JLFURIC ACID, 25% JLFURIC ACID, 50% - 96% JLFURIC ACID, CONC. TO 98% JLFURIC ACID, FUMING JLFUROUS ACID, 10% - 85% JTAN ALL OIL ALOW INNIC ACID R, BITUMINOUS	E E E E E E E	X X G	E E E	G G E E	G G		G		E	E		Е	E	G	E	E
DDIUM PEROXIDE DDIUM PHOSPHATE DDIUM SULCATE DDIUM SULFATE DDIUM SULFATE DDIUM SULFITE DDIUM SULFITE DDIUM THOSULFATE DYBEAN OIL FANNIC CHLORIDE TANNOUS CHLORIDE FANNOUS CHLORIDE FANNOUS CHLORIDE FANNOUS CHLORIDE FEARIC ACID TODDARD SOLVENT TYRENE MONOMER JLFUR CHLORIDE JLFUR CHLORIDE JLFUR CHLORIDE JLFUR CACID JLFUR CACID 25% JLFURIC ACID, 50% - 96% JLFURIC ACID, 50% - 96% JLFURIC ACID, 10% - 85% JTAN XLL OIL ALLOW INNIC ACID R, BITUMINOUS	E E E E E E	X G	E E E	G E E	G	Gi		G	E	G		E	E	G	E	E
DDIUM PHOSPHATE DDIUM SLICATE DDIUM SULFATE DDIUM SULFIDE DDIUM SULFITE DDIUM SULFITE DDIUM SULFITE DDIUM THIOSULFATE DDIUM THIOSULFATE DDIUM THIOSULFATE TANNIC CHLORIDE TANNOUS CHLORIDE TANNOUS SULFIDE TANNOUS SULFIDE TANNOUS SULFIDE TEARIC ACID TODDARD SOLVENT TYRENE MONOMER JLFAMIC ACID JLFUR JLFUR DIOXIDE JLFUR TRIOXIDE, DRY JLFURIC ACID 60% (200F) JLFURIC ACID 60% (200F) JLFURIC ACID, 25% JLFURIC ACID, 25% JLFURIC ACID, 50% - 96% JLFURIC ACID, FUMING JLFUROUS ACID, 10% - 85% JTAN ALL OIL LUCW INNIC ACID R, BITUMINOUS	E E E E E	G	E	E		G	G G	G G	E X	G G		E	E	GX	E	E E
DDIUM SILICATE DDIUM SULFATE DDIUM SULFIDE DDIUM SULFITE DDIUM THIOSULFATE DYBEAN OIL TANNIC CHLORIDE TANNIC SULFIDE TANNOUS CHLORIDE TANNOUS CHLORIDE TEARIC ACID TODDARD SOLVENT TYRENE MONOMER JLFAMIC ACID JLFUR JLFUR CHLORIDE JLFUR CHLORIDE JLFUR TRIOXIDE JLFUR TRIOXIDE JLFUR TRIOXIDE JLFUR CACID, 25% - 50% JLFURIC ACID, 10% - 85% JTAN ALL OIL ALLOW INNIC ACID R, BITUMINOUS	E E E E	-	E	E		E	C	E	ĉ	E		E	E	Ê	E	E
DDIUM SULFIDE DDIUM SULFITE DDIUM SULFITE DYBEAN OIL TANNIC CHLORIDE TANNIC CHLORIDE TANNOUS SULFIDE TANNOUS SULFIDE TEARIC ACID TODDARD SOLVENT TYRENE MONOMER JLFAMIC ACID JLFUR CHLORIDE JLFUR CHLORIDE JLFUR CHLORIDE JLFUR CACID 25% JLFURIC ACID 25% JLFURIC ACID 25% JLFURIC ACID, 50% - 96% JLFURIC ACID, 10% - 85% JTAN XLL OIL XLLOW INNIC ACID R, BITUMINOUS	E E	G	E		G	Ē	Ē	Ē	Ē	Ē		Ē	Ē	G	Ē	-
DDIUM SULFITE DDIUM THIOSULFATE DDIUM THIOSULFATE DDIUM THIOSULFATE DYBEAN OIL TANNIC CHLORIDE FANNOUS CHLORIDE TANNOUS SULFIDE FEARIC ACID TODDARD SOLVENT TYRENE MONOMER JLFAMIC ACID JLFUR CHLORIDE JLFUR CHLORIDE JLFUR TRIOXIDE, DRY JLFURIC ACID 60% (200F) JLFURIC ACID 60% (200F) JLFURIC ACID, 25% JLFURIC ACID, 25% JLFURIC ACID, 25% JLFURIC ACID, 25% JLFURIC ACID, 25% JLFURIC ACID, 50% - 98% JLFURIC ACID, FUMING JLFUROUS ACID, 10% - 85% JTAN ALL OIL ALLOW INNIC ACID R, BITUMINOUS	E E				G	G	E	E	Е	G		Е	E	E	E	E
DDIUM THIOSULFATE DYBEAN OIL TANNIC CHLORIDE TANNIC SULFIDE TANNOUS CHLORIDE TANNOUS CHLORIDE TANNOUS CHLORIDE TEARIC ACID TODDARD SOLVENT TYRENE MONOMER JLFAMIC ACID JLFUR JLFUR CHLORIDE JLFUR TRIOXIDE JLFUR TRIOXIDE, DRY JLFURIC ACID, 25% JLFURIC ACID, 50% - 96% JLFURIC ACID, FUMING JLFUROUS ACID, 10% - 85% JTAN ALL OIL LLOW INNIC ACID R, BITUMINOUS	Е	G	E	E	G	G	Е	E	Е	G		E	_	E	E	E
DYBEAN OIL TANNIC CHLORIDE TANNIC SULFIDE TANNOUS SULFIDE TANNOUS SULFIDE TEARIC ACID TODDARD SOLVENT TYRENE MONOMER JLFAMIC ACID JLFUR CHLORIDE JLFUR CHLORIDE JLFUR DIOXIDE JLFUR CACID, 25% JLFURIC ACID, 50% - 96% JLFURIC ACID, 70% JLFUROUS ACID, 10% - 85% JTAN VLL OIL VLOW VNNIC ACID R, BITUMINOUS			E	E		G E	E	E	E G	G G		E	E	E	E	E
TANNIC CHLORIDE TANNIC SULFIDE TANNOUS SULFIDE TANNOUS SULFIDE TEARIC ACID TODDARD SOLVENT TYRENE MONOMER JLFAMIC ACID JLFUR JLFUR CHLORIDE JLFUR TRIOXIDE, DRY JLFUR TRIOXIDE, DRY JLFURIC ACID 60% (200F) JLFURIC ACID 25% JLFURIC ACID, 25% JLFURIC ACID, 25% JLFURIC ACID, 25% JLFURIC ACID, 25% JLFURIC ACID, 50% - 98% JLFURIC ACID, FUMING JLFUROUS ACID, 10% JLFUROUS ACID, 10% JLFUROUS ACID, 10% MALL OIL LLOW INNIC ACID K, BITUMINOUS		G	x	E	G	X	E	Ē	E	x		E	E	G	E	Ē
TANNOUS CHLORIDE TANNOUS SULFIDE TEARIC ACID TODDARD SOLVENT TYRENE MONOMER JJEFAMIC ACID JLFUR CHLORIDE JLFUR CHLORIDE JLFUR TRIOXIDE, DRY JLFURIC ACID, 25% JLFURIC ACID, 25% JLFURIC ACID, 25% JLFURIC ACID, 50% - 96% JLFURIC ACID, 50% - 96% JLFURIC ACID, 50% - 96% JLFURIC ACID, 10% - 85% JTAN ALL OIL ALLOW INNIC ACID R, BITUMINOUS	G	x	E	Ē	Ğ	G	č	Ē	č	Ē		Ē	Ē	Ğ	Ē	Ē
TANNOUS SULFIDE TEARIC ACID TODDARD SOLVENT TYRENE MONOMER JLFAMIC ACID JLFUR JLFUR JLFUR DIOXIDE JLFUR TRIOXIDE, DRY JLFURIC ACID 60% (200F) JLFURIC ACID 60% (200F) JLFURIC ACID, 55% JLFURIC ACID, 55% JLFURIC ACID, 55% JLFURIC ACID, 55% JLFURIC ACID, 50% JLFURIC ACID, 50% JLFURIC ACID, FUMING JLFUROUS ACID, 10% JLFUROUS ACID, 10% JLFUROUS ACID, 10% MUL OIL LLOW INNIC ACID R, BITUMINOUS	Е			E		E		E				E				E
TEARIC ACID TODDARD SOLVENT TYRENE MONOMER JLFAMIC ACID JLFUR JLFUR CHLORIDE JLFUR TRIOXIDE JLFUR TRIOXIDE, DRY JLFURIC ACID, 25% - 50% JLFURIC ACID, 25% - 50% JLFURIC ACID, 25% - 50% JLFURIC ACID, 25% - 96% JLFURIC ACID, 50% - 96% JLFURIC ACID, CONC. TO 98% JLFUROUS ACID, 10% - 85% JTAN ALL OIL LLOW INNIC ACID R, BITUMINOUS	G		С	E	G	E	Е	E	С	E		E	E	C	E	<u> </u>
FODDARD SOLVENT TYRENE MONOMER JLFAMIC ACID JLFUR CHLORIDE JLFUR CHLORIDE JLFUR TRIOXIDE, DRY JLFUR TRIOXIDE, DRY JLFURIC ACID, 25% JLFURIC ACID, 50% - 96% JLFURIC ACID, FUMING JLFURIC ACID, FUMING JLFUROUS ACID, 10% JLFUROUS ACID, 10% - 85% JTAN ALL OIL ALLOW INNIC ACID NR, BTUMINOUS	E G	G	G	E C	G	E C	G	E E	Е	G	Е	E	E	E	E	E E
TYRENE MONOMER JLFANIC ACID JLFUR JLFUR CHLORIDE JLFUR CHLORIDE JLFUR CACID 60% (200F) JLFURIC ACID 60% (200F) JLFURIC ACID, 25% - 50% JLFURIC ACID, 55% - 50% JLFURIC ACID, 50% - 96% JLFURIC ACID, 50% - 96% JLFURIC ACID, FUMING JLFUROUS ACID, 10% - 85% JTAN ALL OIL ALLOW INNIC ACID K, BITUMINOUS	x	G	X	X	Ē	x	č	Ē	Ē	x	x	E	Ē	Ğ	Ē	Ē
JLFUR CHLORIDE JLFUR CHLORIDE JLFUR DIOXIDE JLFUR TRIOXIDE, DRY JLFURIC ACID, 60% (200F) JLFURIC ACID, 25% - 50% JLFURIC ACID, 25% - 50% JLFURIC ACID, 25% - 96% JLFURIC ACID, 50% - 96% JLFURIC ACID, CONC. TO 98% JLFURIC ACID, FUMING JLFUROUS ACID, 10% - 85% JTAN ALL OIL ALLOW INNIC ACID R, BITUMINOUS	Х		X	X	x	х	х	x		x		Е	G	C	G	G
JLFUR CHLORIDE JLFUR DIOXIDE JLFURIC ACID 60% (200F) JLFURIC ACID 60% (200F) JLFURIC ACID, 25% JLFURIC ACID, 55% - 50% JLFURIC ACID, 50% - 96% JLFURIC ACID, 50% - 96% JLFURIC ACID, CONC. TO 98% JLFURIC ACID, FUMING JLFUROUS ACID, 10% - 85% JTAN NLL OIL LLOW INNIC ACID R, BITUMINOUS	E		X	E		G	G	C				E		X	E	C C
JLFUR DIOXIDE JLFUR TRIOXIDE, DRY JLFURIC ACID, 25% JLFURIC ACID, 25% JLFURIC ACID, 25% JLFURIC ACID, 50% - 96% JLFURIC ACID, 50% - 96% JLFURIC ACID, CONC. TO 98% JLFURIC ACID, FUMING JLFUROUS ACID, 10% - 85% JTAN ALL OIL ALLOW INNIC ACID R, BITUMINOUS	F X	G	F X	F C	с	X X	x C	x c	~	X		E	E E	c	G E	X E
JLFUR TRIOXIDE, DRY JLFURIC ACID 60% (200F) JLFURIC ACID, 25% JLFURIC ACID, 25% - 50% JLFURIC ACID, 25% - 96% JLFURIC ACID, CONC. TO 98% JLFURIC ACID, FUMING JLFUROUS ACID, 10% - 85% JTAN ALL OIL LLOW NINIC ACID NR, BTUMINOUS	Ĝ	G	Ê	c	x	ĉ	x	x	C X	X C		E	G		E	Ē
JLFURIC ACID, 25% JLFURIC ACID, 25% - 50% JLFURIC ACID, 50% - 96% JLFURIC ACID, CONC. TO 98% JLFURIC ACID, FUMING JLFUROUS ACID, 10% JLFUROUS ACID, 10% - 85% JTAN ALL OIL ALLOW INNIC ACID R, BITUMINOUS	Ğ		G	č	x	č	x	x	~	x		Ē	X	G	Ē	Ğ
JLFURIC ACID, 25% - 50% JLFURIC ACID, 50% - 96% JLFURIC ACID, CONC. TO 98% JLFURIC ACID, FUMING JLFUROUS ACID, 10% JLFUROUS ACID, 10% JLFUROUS ACID, 10% - 85% JTAN ALL OIL ALLOW NNIC ACID NR, BITUMINOUS	Х	X	X		х		Х	х	х	х			X		С	X
JLFURIC ACID, 50% - 96% JLFURIC ACID, CONC. TO 98% JLFURIC ACID, FUMING JLFUROUS ACID, 10% JLFUROUS ACID, 10% - 85% JLFUROUS ACID, 10% - 85% JLFUROUS ACID NNIC ACID R, BITUMINOUS	G	X	E	E	E	G	E	E	X	G	E	E	E	X	E	E
JLFURIC ACID, CONC. TO 98% JLFURIC ACID, FUMING JLFUROUS ACID, 10% JJFUROUS ACID, 10% - 85% JTAN ALL OIL ALLOW ANNIC ACID AR, BITUMINOUS	G X	X	E G	G C	G X	G X	E C	E C	X X	G X		E E	E	X	E E	E
JLFURIC ACID, FUMING JLFUROUS ACID, 10% JLFUROUS ACID, 10% - 85% JTAN ALL OIL ALLOW NNIC ACID R, BITUMINOUS	x	x	X	x	x	x	x	x	x	x		Ē	Ē	x	Ğ	Ē
JLFUROUS ACID, 10% - 85% JTAN ALL OIL ALLOW INNIC ACID AR, BITUMINOUS	Х	х	X	Х	х	х	х	Х	х	х		Е	X	x	G	X
JTAN ALL OIL ALLOW NNIC ACID AR, BITUMINOUS	E	X	E	E	С	G	G	C	С	G		E	E		E	E
ALL OIL ALLOW INNIC ACID R, BITUMINOUS	Е	X	G	E	С	G	С	С	X	С		E E	E	X	G F	E
ALLOW INNIC ACID IR, BITUMINOUS	х		x	с		х	с	E		x		E	E	E	Ē	Ċ
R, BITUMINOUS	G		E	С		С	G	Е		х		Е	E	E	E	č
	Е	Х	E	E	G	E	E	E	G	G	E	E	E	E	E	E
	X	G	X	C	G	C	C	G	G	X		E		G	E	
	X G	C X	X C	X E	C G	X E	X E	X E	G E	X G	C E	E E	X E	GE	E	X E
BUTYL AMINE	u		Ğ	x	ŭ	-	-	-	-	ŭ	-	-		-		
LONE 2																E
	С	E	C	X		х	X	G		X		E	G	G	E	G
	G		G	G		G	G	G		G		Е	E	X	E	E
RTIARY BUTYL AMINE RTIARY BUTYL MERCAPTAN	х		G X	X X		х	х	x		x		Е		x	E	
	x		\uparrow	X		X	~	x		~		Ē		Ĝ	G	G
TRACHLOROETHANE	x		x	x		x	х	x		х	с	E	с	X	E	
TRACHLOROETHYLENE			X	х		Х	х	c	С	х		Е	G	X	E	E
	Х		×	X		X	х	X				E		C	E	E
TRACHLORONAPHTHALENE	X X			X		X E		X E				E			GE	G
	X X X					X	х	X				E			-	1
	X X X E		x	х	с	x	x	x	G	х	x	E	G	x	x	x
IF	X X X		X	X	č	х	x	x	Ğ	x	x	Е	G	X	X	x
	X X X E E G G		E	E		E	С	E				E	E	G	E	E
	X X E E G G G			X		X	X	C	_	X	,	E	G	X	E	_
	X X X E E G G G X	-	X	X	C	X X	х	X X	E	X	X	E E	E	X	E G	E
	X X X E E G G G X X	с	X X				х	x	Е	x	x	E		x	E	1
RANSFORMER OIL	X X X E E G G G X X X		x	X	-	X		Ê	-	x	~	Ē	E	Ê	E	1
RANSMISSION 'A' OIL	X X X E E G G G X X X X X	c c			С	X X	G								E	
RI (2-HYDROXYETHYL) AMINE RIBUTYL AMINE	X X X E E G G G X X X X		x x	X X	-			E C	G	X G		E	1	EX	X	F

Chemical or Material Conveyed	BUTYI	сь _Е	EPDM	HYPALON	HYTREI	NATURA.	NEOPREAL	NITRILE	ND74N	SBR	SANTODE	TEFLOW	UHIMM	URETHAN	UITON	XLPE	Acid & Chemical
TRIBUTYL PHOSPHATE TRICHLOROACETIC ACID TRICHLOROBENZENE TRICHLOROETHANE TRICHLOROETHYLENE TRICHLOROMETHANE TRICHLOROMETHANE TRICHLOROTOLUENE	G G X X X X X	C X	E G X X X	X C X X X X X	C X X X	C C X X X X X	X X X X X X	X C X X X X X	G X X C C	X X X X X X	x x	E E E E E E	E E G	X X X X X X	X X G E E E	E E G	Air & Multi- Purpose
TRICRESYL PHOSPHATE TRIETHANOLAMINE <u>TRIETHYLAMINE</u> TRIETHYLENE GLYCOL TRIHYDROXYBENZOIC ACID TRIMETHYL PENTANES (MIXED)	E G C E G X	E	E E G X	X E G C	C X X E	C G G E X	C X G C	X C E E G E	G G E	X G X G X	x	E E E E E E	E	X X X G	E X E E E	E E	Fire Suppression
TRIMETHYL PENTENE TRIMETHYLAMINE TRISODIUM PHOSPHATE TRITOYL PHOSPHATE TUNG OIL TUNG OIL (CHINA OIL) TURPENTINEX	E E X C X	E E C C G	E E X X X	E X E E X	E C G G	E X X X X	E X E X	E X E X	E G G E	E X X X X	x	E E E E E	E E G	E X C E	E E E E	E E E G	Food Handling
UDMH UNDECYL ALCOHOL UREA URETHANE FORMULATIONS URIC ACID VARNISH	E E E X	C	E	E E E X	G X	E E E X	G	G E G E G	E E G E	x X X	E	E E E E E E	E	G X C	E X E E	E	Made To Order
VEGETABLE OILS VERSILUBE F44 VERSILUBE F55 VINEGAR VINEGAR ACID VINYL ACETATE	C E E E	G	C E X E G	G E E C	с	X E G X	C E G X	E E G X	G E E E	X E G X		E E E X	E X E	E E C	E E E E	E 	Material Handling
VINYL BENZENE VINYL CHLORIDE (GAS) <u>VINYL CYANIDE</u> VINYL ETHER VINYL STYRENE VINYL TOLUENE	X X X X X X	E	X G X	X C G X X	x	X G C X X X	x c	X X G X	E	x c x	x	E E E E E	E E E E E	c x	G C X E E	G E E E E	Petroleum Dispenser
VINYL TRICHLORIDE VITAL, 4300, 5310 VM&P NAPHTHA WATER WATER, BOILING WATER, SODA	X E E	G	X X E E	X E E	E C E	X E	X C G G	X X E G	E E X E	G G	E G E	E E E G E	E E X	E G	E E G	E X E X	Petroleum Transport
WEMCO C WHISKEY WHITE OIL WHITE PINE OIL WINES WOOD ALCOHOL	X E X E E		X E X E E	X E X E E	GG	X E X E E	G E G X E E	E E G E E	E	X E X E E		E E E E	X E X E	E X E X X	E E E E C	X X X E	Petroleum LP Gas
WOOD OIL XENON XYLENE, XYLOL XYLIDINE ZEOLITES ZINC ACETATE	C E X G E	с	X E X C E	C E X E C	G C	X E X E E	G E X X E G	E E X C E G	G	X E X E X	x	E E E E	E E G	C E C X	E E E C E C	E G G	Oil Field
ZINC CARBONATE ZINC CHLORIDE ZINC CHROMATE ZINC SULFATE	E E E E	x x	E E	E E C E	E C	E E	E	E E E	E X	E G		E E E	E E E	E G G	E E	E E G E	Special Applications

Steam

Water

Welding

Couplings & Equipment

Safety & Tech Data

Chemical Charts

DYNAFLEX® PVC Hose Chemical Resistance Chart

Satisfactory

Questionable–Suggest Testing

Unsatisfactory

- (Blank) = No Data

Key: A

С

U

		T				T
Chemical	Concentration	Temperatu 68ºF 140	D⁰F	Chemical	Concentration	Temperature 68ºF 140ºF
Acetate Solvents Acetic Acid			í	Fluorine		U U
Acetic Acid	10% Glacial		5	Formaldehyde Formic Acid	40% 40%	
Acetone		υι	J	Formic Acid	50%	Â C U U U
Acrylonitrile Adipic Acid		A C A C		Formic Acid Fuel Oil	100%	0 0
Alcohol Butyl		A C	Š	Glacial Acetic Acid		C U
Alcohol Ethyl		A C A C	Ş	Glucose Glycerine		A A A A
Alcohol Isopropyl Alcohol Methyl		A C	Ś	Grape Sugar		A A A A
Aluminum Acetate		A -	-	Grease		
Aluminum Chloride Aluminum Hydroxide		A A A -	4	Heptane Hexane		C U C U
Aluminum Sulfate		A	4	Hydrobromic Acid		A A
Allyl Chloride Ammonia	0.88 S.G.		-	Hydrochloric Acid Hydrochloric Acid	10% 40%	A A A U
Ammonia	Aqueous	A A	A	Hydrofluoric Acid	10%	A A A U A C A U
Ammonia	Dry Gas	A - U I	_ J	Hydrofluoric Acid	40%	A U
Ammonia Ammonium Chloride	Liquid	A A		Hydrofluoboric Acid Hydrofluosilicic Acid		A A A A
Ammonium Hydroxide		Α -		Hydrogen Peroxide		
Animal Oils Amyl Acetate		 U I	J	Hydrogen Sulphide Iso-octan		A A A U C U A U U C U U A U C U U A U C U U A U C U U A U C U U A U C U U A U C U U A U C U U A U C U U A U C U U A U C U U A U C U U A U C U U A U C U U A U C U U A U C U U A U C U U A U U C U U A U U A U C U U A U U A U C U U A U U U A U U U A U U U A U U U A U U U A U U U A U U U A U U U A U U U A U
Aniline Oils			-	Isopropyl Acetate		A C U U C C U U
Aromatic Hydrocarbons Asphalt			J	Kerosene Ketones		C C
ASTM Fuel A			5	Lactic Acid	10%	A –
ASTM Fuel B		υι	J	Lactic Acid	100%	A – U U C U
ASTM #1 Oil ASTM #3 Oil			_	Lacquer Solvents Linseed Oil		
Barium Chloride		A A		Lubricating Oils		
Barium Hydroxide Barium Sulfide		A A A A	4	Magnesium Chloride Magnesium Hydroxide		A A A A
Benzene			5	Magnesium Sulphate		ÂÂ
Benzine			Ç	Malic Acid		
Bordeaux Mixture Borax		A A A A		Methyl Acetate Methyl Bromide		A A U U U U U U U U
Boric Acid		A A	A	Methyl Ethyl Ketone		Ŭ Ŭ
Brine Bromine Traces			A J	Methylene Chloride Mineral Oils		
Butyl Acetate		ŬĨ	Ĵ	Monochlorobenzene		U U
Calcium Hydroxide		A A		Naptha Napthalene		U U C U U U
Calcium Hypochlorite Carbonic Acid		A A C L	Ĵ	Natural Gas*		
Carbon Dioxide		A A	Ą	Nitric Acid	10%	A A
Carbon Disulphite Carbon Monoxide		U U A A	7 J	Nitric Acid Nitric Acid	40% 70%	UCUUACUUAAUUAAUUAA
Carbon Tetrachloride		υι	J	Nitrobenzene		ŬŬ
Casein Chlorine	Dry Gas	A C A A	Ş	Nitrogen Fertilizers Oleic Acid		A – A C
Chlorine	Wet Gas	A A	A	Oxalic Acid		A A
Chlorine	Water		J	Palmitic Acid		A A
Chlorobenzene Chlorinated		0 (J	Paraffin Pentane		A A C U U U C U
Hydrocarbons			j	Perchloroethylene		Ŭ Ŭ
Chloroform Chromic Acid	10%) J	Phenol Phosphoric Acid		C U A A
Citric Acid	10,0	A A	4	Pitch		A C
Coal Tar Copper Chloride		U U A A	, ,	Potassium Hydroxide Propane		A A A A
Copper Chloride Copper Nitrate		Ă Â		Sea Water		ÂÂ
Copper Sulphate		A A	4	Sodium Hydroxide	100/	
Cottonseed Oil Creosote		 U I	J	(Caustic Soda) Sodium Hydroxide	10%	A A
Cresol		A C)	(Caustic Soda)	50%	A U
Cresylic Acid Cyclohexane		U U A C) J	Sodium Cyanide Soybean Oil		A A
Cylohexanone		υι	J	Stearic Acid		– – A A U U
DDT Weed Killer Detergent Synthetic			ç	Styrene Sulphur Dioxide	Der	U U
Developers Photographic		A A A A	À	Sulphur Dioxide	Dry Moist	A A C U
Dextrin		A A	A	Sulphur Dioxide	Liquid	U U
Dextrose Dibutyl Phthalate		A A U l	A J	Sulphuric Acid Sulphuric Acid	45% 60%	A A C C U U
Dichlorobenzene			Ĵ	Sulphuric Acid	98%	Ŭ Ŭ
Diesel Oil Diethylene Glycol		ĀĀ	<u>_</u>	Sulphurous Acid Tannic Acid	30%	A – A A
Diethyl Ether		ΰί	Ĵ	Tartaric Acid		ÂÂ
Di-isodecyl Phthalate		ŪŪ	J	Tetrahydrofuran		A U U U U U U U U U U U U U U U U U U U
Dicotyl Phthalate Emulsifiers		U U A A	۲ ۲	Toluene Trichlorethylene		Ŭ Ŭ U U
Emulsions Photographic		A A	A	Triethanolamine		Ă Ă
Ethyl Acetate Ethylene Dichloride			ן ן	Tricresyl Phosphate Turpentine		A A U U C U A A
Ethylene Glycol		A A	A	Urea		ĂĂ
Fatty Acid		A A	A	Vinegar		A A U U U U
Ferric Chloride Ferric Sulphate		A A A A		Vinyl Acetate Vinyl Chloride		U U U
Ferrous Chloride		A A	A	Water		Ă Ă U U
Ferrous Sulphate Fixing Solution		A A	4	Xylene Zinc Chloride		U U A A
Photographic		A A	4	Zinc Sulphate		ÂÂ

Parker Industrial Hose Division 17295 Foltz Industrial Parkway Cleveland, OH 44136 Tel: 1-800-C-PARKER (1-800-272-7537) Web site: www.parker.com/indhose

© 2002 Parker Hannifin Corporation CAT 4800-USA 100M-6/02